Work from Harvey McMahon’s group in the LMB’s Neurobiology Division has uncovered how a protein, FCHSD2, controls actin polymerisation during endocytosis. Importantly the scientists discovered that FCHSD2 does its job from the area surrounding the site of endocytosis – making it the first description of an endocytic protein which localises to the flat region around […]
Insight on Research
Parkin activation and early-onset Parkinson’s disease: the last piece of the puzzle
Researchers at the LMB have solved the elusive 3D structure of activated Parkin, an enzyme implicated in early-onset Parkinson’s disease. Led by David Komander’s group in the LMB’s PNAC Division, in collaboration with the LMB’s Biological Mass Spectrometry facility, this new work reveals insights into previously unstudied parts of this important protein and helps explain […]
How does the replisome respond to DNA damage?
Work by Joe Yeeles’ group in the LMB’s PNAC Division has for the first time revealed the earliest responses when the eukaryotic DNA replication machinery, the replisome, collides with DNA damage. Every time a cell divides, its DNA must be replicated so that each daughter cell inherits a complete copy of the genome. Since DNA […]
HIV exploits a native cellular molecule to increase the stability of its capsid
Scientists in Leo James’ group in the LMB’s PNAC Division, in collaboration with Till Böcking’s group at the University of New South Wales, Australia and Adolfo Saiardi’s group at the MRC Laboratory for Molecular Cell Biology, have uncovered how the HIV virus stabilises its capsid by binding to an abundant cellular polyanion, IP6. IP6 increases HIV […]
Three-dimensional representation of motor space in the brain
In our day-to-day lives we execute spatially targeted movements with ease and seemingly without much thought. These movements may include reaching for your morning cup of coffee, checking your mirrors on your drive into work, or catching a cricket ball. On the face of it, these actions may seem to cover a broad range of […]
How the earliest life on Earth may have replicated itself
Scientists in Philipp Holliger’s group in the LMB’s PNAC Division have created a new type of genetic replication system to demonstrate how the first life on Earth – in the form of RNA – could have replicated itself. Our understanding of life’s early history is limited but a popular theory for the earliest stages of […]