Alcohol consumption can indirectly cause damage to our DNA and elevate cancer risk. KJ Patel’s group in the LMB’s PNAC Division has identified a novel repair mechanism for DNA damage created by by-products of alcohol metabolism.
Insight on Research
How is the Fanconi Anaemia pathway activated to remove DNA lesions?
New study, led by Pablo Alcón and Shabih Shakeel in Lori Passmore’s group, in collaboration with KJ Patel in the PNAC Division, uncovers a unique molecular “clamp and pin” mechanism that activates the D2l complex, which then recruits enzymes that cut out damaged DNA
A novel tau fold in the neurodegenerative disease corticobasal degeneration
Corticobasal degeneration (CBD) is a neurodegenerative disease that belongs to a family of diseases called tauopathies in which the protein tau forms abnormal filaments. Sjors Scheres’ and Michel Goedert’s groups have now solved the first structures of CBD tau filaments.
How two proteins work together in DNA damage detection
Detection of DNA damage requires a quick response and dynamic regulation of proteins. Better understanding how DNA repair pathways are initiated could have great clinical implications, particularly for cancer therapy. A team of scientists, including members of David Neuhaus’ group at the LMB, led by Ivan Ahel at the University of Oxford, has now visualised the interaction between two proteins, PARP and HPF1, to show how they work together to initiate DNA repair.
First look at the atomic structure of thyroglobulin
Thyroglobulin, the protein precursor to the thyroid hormones T3 and T4, is the only molecule in the human body that is modified by iodine, and the modification directly leads to the formation of the thyroid hormones in the thyroid gland. But the exact process has been sparsely understood.
Structures of virus-like capsids involved in learning and memory formation
The neuronal gene Arc plays important roles in neural plasticity, learning and memory-related molecular processes and has been shown to mediate intercellular RNA transfer by forming viral-like capsids. John Briggs’ group has now solved the first structures of Arc capsids, providing a foundation for an improved understanding of learning and consolidation of memories.