• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

Discovering how translation and mRNA decay are linked

Published on 21 June, 2018

Scientists in Lori Passmore’s group in the LMB’s Structural Studies Division have revealed new mechanistic insights into the link between translation and mRNA decay. In collaboration with Jeff Coller’s group at Case Western Reserve University, USA, and Brenton Graveley’s group at the University of Connecticut, USA, the scientists’ findings have implications for understanding regulation of […]

Uncovering the structure of the serotonin receptor

Published on 21 June, 2018

Scientists in Chris Tate’s group in the LMB’s Structural Studies Division have used electron cryo-microscopy to determine the structure of the serotonin receptor coupled to the heterotrimeric G protein Go, providing insights into how receptors bind specific G proteins. Communication between cells throughout our bodies is vital for our health. Cells release signals, such as […]

Controlling actin polymerisation in clathrin mediated endocytosis

Published on 7 June, 2018

Work from Harvey McMahon’s group in the LMB’s Neurobiology Division has uncovered how a protein, FCHSD2, controls actin polymerisation during endocytosis. Importantly the scientists discovered that FCHSD2 does its job from the area surrounding the site of endocytosis – making it the first description of an endocytic protein which localises to the flat region around […]

Parkin activation and early-onset Parkinson’s disease: the last piece of the puzzle

Published on 7 June, 2018

Researchers at the LMB have solved the elusive 3D structure of activated Parkin, an enzyme implicated in early-onset Parkinson’s disease. Led by David Komander’s group in the LMB’s PNAC Division, in collaboration with the LMB’s Biological Mass Spectrometry facility, this new work reveals insights into previously unstudied parts of this important protein and helps explain […]

How does the replisome respond to DNA damage?

Published on 1 June, 2018

Work by Joe Yeeles’ group in the LMB’s PNAC Division has for the first time revealed the earliest responses when the eukaryotic DNA replication machinery, the replisome, collides with DNA damage. Every time a cell divides, its DNA must be replicated so that each daughter cell inherits a complete copy of the genome. Since DNA […]

HIV exploits a native cellular molecule to increase the stability of its capsid

Published on 31 May, 2018

Scientists in Leo James’ group in the LMB’s PNAC Division, in collaboration with Till Böcking’s group at the University of New South Wales, Australia and Adolfo Saiardi’s group at the MRC Laboratory for Molecular Cell Biology, have uncovered how the HIV virus stabilises its capsid by binding to an abundant cellular polyanion, IP6. IP6 increases HIV […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Interim pages omitted …
  • Page 63
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed.