• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

Integral component of the Wnt enhancesome identified

Published on 16 March, 2017

The Wnt signalling pathway is an ancient cell communication pathway that has important roles in development and cancer. Wnt signals elicit context-dependent transcriptional responses by stabilising a cytoplasmic effector called beta-catenin. This controls the embryonic development of tissues and organs in all animals, from the most primitive ones all the way to humans. In addition, […]

First complete 3D genome structure from individual mammalian cells

Published on 13 March, 2017

DNA in the nucleus is arranged into nucleosomes to produce an 11nm fibre which then intricately folds into high order assemblies. This nuclear organisation – the 3D arrangement of the genome within the nucleus – is critically linked to nuclear processes. Previously it has only been possible to analyse genome organisation across populations of cells. […]

How astrocytes control circadian time-keeping in our principal body clock

Published on 13 March, 2017

The suprachiasmatic nucleus of the hypothalamus (SCN) is our principal “body clock”, controlling our daily (circadian) rhythms of physiology and behaviour that adapt us to the 24-hour cycle of day and night.  It ensures that numerous other local tissue clocks distributed across the body are in tune with each other and with the external light-dark […]

New insights into how peptides became a part of the ancient RNA world

Published on 8 February, 2017

In all present-day organisms, information encoded in DNA, the genetic material of the cell, is converted via an RNA intermediate into proteins, the molecular machines of the cell. However, evidence suggests that in a distant evolutionary past our single-celled ancestors used only RNA for both genetic information storage and metabolism. A cornerstone of this “RNA […]

The idiosyncratic ribosomes of mitochondria

Published on 3 February, 2017

Mitochondria are organelles within eukaryotic cells that likely evolved from an ancient bacterium that was engulfed by a primordial eukaryote. Within mitochondria, mitochondrial ribosomes (mitoribosomes) synthesise a subset of essential proteins encoded by the mitochondrial genome. Although mitoribosomes share a common ancestor with bacterial ribosomes, they have undergone substantial changes during evolution that have resulted […]

Uncovering the molecular basis of triage during protein synthesis

Published on 20 January, 2017

Every minute, cells make millions of new proteins which must be transported to the correct location, folded, modified and assembled with other proteins in order to function properly. Failure at any of these maturation steps can reduce protein function and lead to the accumulation of aberrant protein intermediates, resulting in disease. To mitigate this, protein […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Interim pages omitted …
  • Page 62
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok