Dyneins are a family of motor proteins that move along microtubules to transport various important cargos, including proteins and RNAs, to different parts of the cell and are crucial to correct cell function. Gradually, the structure of various components of dynein have been revealed. Now work by Andrew Carter’s group in the LMB’s Structural Studies […]
Insight on Research
Dynamic structure of human DNA repair enzyme, ATM, revealed
The DNA in cells is constantly damaged by both internal activities of the cell and by external factors such as ionising radiation. In order to function correctly, this damage must be repaired, or if it cannot be repaired, the cell must be killed to prevent development of diseases such as cancer. The large protein kinase, […]
The key to GPCR-G protein selectivity
G protein-coupled receptors (GPCRs) form the largest family of membrane-protein receptors and drug targets. With over 800 different family members in humans, GPCRs regulate diverse intracellular signalling cascades in different cell types, tissues and organ systems. Whilst GPCRs sense a plethora of environmental stimuli, the appropriate cellular response is primarily triggered by binding to four […]
Integral component of the Wnt enhancesome identified
The Wnt signalling pathway is an ancient cell communication pathway that has important roles in development and cancer. Wnt signals elicit context-dependent transcriptional responses by stabilising a cytoplasmic effector called beta-catenin. This controls the embryonic development of tissues and organs in all animals, from the most primitive ones all the way to humans. In addition, […]
First complete 3D genome structure from individual mammalian cells
DNA in the nucleus is arranged into nucleosomes to produce an 11nm fibre which then intricately folds into high order assemblies. This nuclear organisation – the 3D arrangement of the genome within the nucleus – is critically linked to nuclear processes. Previously it has only been possible to analyse genome organisation across populations of cells. […]
How astrocytes control circadian time-keeping in our principal body clock
The suprachiasmatic nucleus of the hypothalamus (SCN) is our principal “body clock”, controlling our daily (circadian) rhythms of physiology and behaviour that adapt us to the 24-hour cycle of day and night. It ensures that numerous other local tissue clocks distributed across the body are in tune with each other and with the external light-dark […]