• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

IL-17, a regulator of the immune system, impacts behaviour

Published on 19 January, 2017

The state of the immune system has effects on brain function, but despite suggestions that immunoregulators can affect people’s mood and behaviour, we are only beginning to understand how these two major body systems interact. The contributions of a neuron to circuit activity and behaviour depend on its responsiveness to upstream inputs, and its ability […]

New insights into the structure and dynamics of the catalytic spliceosome

Published on 12 January, 2017

The spliceosome is a molecular machine, which together with RNA polymerases and ribosomes plays a critical role in basic gene expression. Research by Kiyoshi Nagai’s group in the LMB’s Structural Studies Division, has previously revealed the structure of the spliceosome in a fully active, substrate-bound state, immediately after its first catalytic reaction. The group has […]

New hypothesis for the formation of macropinocytic cups

Published on 14 December, 2016

Macropinocytosis, the cellular uptake of fluids from the environment, is employed by a variety of cells and requires the formation of a cup-shaped structure that protrudes from the cell’s surface and captures gulps of medium. Polymerisation of actin under the plasma membrane drives the extension of macropinocytic cups. However, until now it has been unclear […]

Recovering stalled ribosomes

Published on 8 December, 2016

Ribosomes are cellular molecular machines that link amino acids together in the order specified by messenger RNA (mRNA) to make proteins. Near the end of the mRNA molecule a specific nucleotide sequence, known as a stop codon, signals for protein synthesis to terminate by recruiting release factors that release the newly made protein from the […]

New technologies enable systematic recoding of genomes

Published on 24 October, 2016

The design and synthesis of genomes provides a powerful approach for understanding and engineering biology. The development of methods that can accurately replace the genome in sections, provide feedback on precisely where a given design fails and on how to repair it, and that can be rapidly repeated for whole genome replacement would accelerate our […]

New insights into the mechanism of ubiquitin chain cleavage

Published on 13 October, 2016

The ubiquitin system is a complex system in all eukaryotic organisms involved in the regulation of most cellular processes. A huge variety of signals are assembled with ubiquitin molecules onto cellular proteins to mark them for a specific task. Important regulators of the ubiquitin system are deubiquitinating enzymes (DUBs), which remove, or cleave, ubiquitin chains […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Interim pages omitted …
  • Page 62
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok