Cell survival depends on adaptive signalling pathways to ensure that the supply of vital components matches the fluctuating needs of the cell. The proteasome is essential for the selective degradation of most cellular proteins and thereby controls virtually all cellular processes. The current prevailing view is that protein degradation is largely regulated at the level […]
Insight on Research
Structure of the catalytic spliceosome
The spliceosome is a molecular machine, which together with RNA polymerases and ribosomes plays a critical role in basic gene expression. Due to its highly dynamic nature the structure of the spliceosome has remained elusive until now. Research by Kiyoshi Nagai’s group, in the LMB’s Structural Studies Division, has for the first time captured the […]
NBLAST – a new online tool to compare neurons
Researchers in Greg Jefferis’s group in the LMB’s Neurobiology Division have developed a new online tool to analyse images of neurons. This tool, known as NBLAST, is free and available to all. NBLAST enables researchers to measure the similarity between neurons and organise them into neuron families, akin to tools such as BLAST that allow […]
In vivo visualisation and quantification of the circadian clock protein Period2
Circadian clocks are found across all higher species, controlling daily rhythms of behaviour and physiology. They are thought to “tick” by producing and then degrading circadian proteins on a 24 hour cycle. At a molecular level, they typically involve expression of “clock” genes that are inhibited approximately every 24 hours by the proteins they encode. […]
A protein quality control system for mislocalised proteins
In order to function properly, many of the cell’s proteins need to be segregated to membrane-bound organelles and assembled into multi-protein complexes. Newly made proteins that fail to be localised or assembled properly must be promptly recognised by the cell and destroyed. These pathways of protein quality control are important because the accumulation of aberrant […]
Development of effective immunity to infections is promoted by chromatin component
Effective immunity to infections requires the development of a diverse repertoire of antibodies. Antibody diversity is created through a process known as somatic hypermutation, which is the programmed mutation of specific sequences of DNA in the antibody genes. The introduction of mutations results in the production of antibodies that recognise and bind to different antigens, […]