• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

HIV uses capsid pores to import nucleotides and evade innate immunity

Published on 11 August, 2016

HIV is a retrovirus, meaning it has to copy its RNA genome into DNA in order to infect cells. While much has been learned about the virus, investigators don’t understand how it evades our immune system so successfully. A long-standing question has been how the HIV virus copies its genome using raw materials from the […]

An evolutionarily conserved pathway controls proteasome homeostasis

Published on 28 July, 2016

Cell survival depends on adaptive signalling pathways to ensure that the supply of vital components matches the fluctuating needs of the cell. The proteasome is essential for the selective degradation of most cellular proteins and thereby controls virtually all cellular processes. The current prevailing view is that protein degradation is largely regulated at the level […]

Structure of the catalytic spliceosome

Published on 26 July, 2016

The spliceosome is a molecular machine, which together with RNA polymerases and ribosomes plays a critical role in basic gene expression. Due to its highly dynamic nature the structure of the spliceosome has remained elusive until now. Research by Kiyoshi Nagai’s group, in the LMB’s Structural Studies Division, has for the first time captured the […]

NBLAST – a new online tool to compare neurons

Published on 20 July, 2016

Researchers in Greg Jefferis’s group in the LMB’s Neurobiology Division have developed a new online tool to analyse images of neurons. This tool, known as NBLAST, is free and available to all. NBLAST enables researchers to measure the similarity between neurons and organise them into neuron families, akin to tools such as BLAST that allow […]

In vivo visualisation and quantification of the circadian clock protein Period2

Published on 1 July, 2016

Circadian clocks are found across all higher species, controlling daily rhythms of behaviour and physiology. They are thought to “tick” by producing and then degrading circadian proteins on a 24 hour cycle. At a molecular level, they typically involve expression of “clock” genes that are inhibited approximately every 24 hours by the proteins they encode. […]

A protein quality control system for mislocalised proteins

Published on 23 June, 2016

In order to function properly, many of the cell’s proteins need to be segregated to membrane-bound organelles and assembled into multi-protein complexes. Newly made proteins that fail to be localised or assembled properly must be promptly recognised by the cell and destroyed. These pathways of protein quality control are important because the accumulation of aberrant […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • Interim pages omitted …
  • Page 63
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed.