• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

In vivo visualisation and quantification of the circadian clock protein Period2

Published on 1 July, 2016

Circadian clocks are found across all higher species, controlling daily rhythms of behaviour and physiology. They are thought to “tick” by producing and then degrading circadian proteins on a 24 hour cycle. At a molecular level, they typically involve expression of “clock” genes that are inhibited approximately every 24 hours by the proteins they encode. […]

A protein quality control system for mislocalised proteins

Published on 23 June, 2016

In order to function properly, many of the cell’s proteins need to be segregated to membrane-bound organelles and assembled into multi-protein complexes. Newly made proteins that fail to be localised or assembled properly must be promptly recognised by the cell and destroyed. These pathways of protein quality control are important because the accumulation of aberrant […]

Development of effective immunity to infections is promoted by chromatin component

Published on 25 May, 2016

Effective immunity to infections requires the development of a diverse repertoire of antibodies. Antibody diversity is created through a process known as somatic hypermutation, which is the programmed mutation of specific sequences of DNA in the antibody genes. The introduction of mutations results in the production of antibodies that recognise and bind to different antigens, […]

Insight into the complex 3D topology of the TOR enzyme

Published on 15 April, 2016

Target of Rapamycin (TOR) is a protein kinase that is essential in maintaining cellular homeostasis. In mammalian cells the enzyme occurs as two large protein complexes and one of these, mTORC1, controls growth of cells by integrating signals from growth factors and the nutritional state of cells. Many tumours in humans are associated with inappropriate […]

Daily magnesium fluxes regulate cellular timekeeping and energy balance

Published on 14 April, 2016

Most organisms, including humans and plants, have circadian rhythms that allow them to adjust their metabolism and behaviour to match the 24-hour cycle of day and night. Circadian rhythms are even observed at the level of individual cells, and are dependent upon a biological clock mechanism that is not fully understood. Work by John O’Neill’s […]

Nanostructures from synthetic genetic polymers

Published on 18 March, 2016

‘Synthetic biology’ is a scientific approach that seeks to answer fundamental questions in biology by reconstruction and modification of the molecules and processes of life. Beyond its well-known role as the carrier of genetic information, DNA (and its close cousin RNA) have shown great promise as a nano-molecular building material: by careful arrangement of the […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • Interim pages omitted …
  • Page 62
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed.