Small molecules are often used to regulate the functions of proteins and provide many drugs and tools for understanding biological pathways. However, selectively controlling a specific target protein within living cells is a major challenge. Jason Chin’s group from the LMB’s PNAC Division have created a new technique called BOLT that can selectively regulate specific […]
Insight on Research
Freeze-thaw cycles turn life’s simple building blocks into functional macromolecules
There is compelling evidence that in the distant past, our single-celled ancestors used RNA, a chemical cousin of DNA, for both genetic information storage and metabolism. This primordial “RNA world” would have needed an RNA enzyme able to replicate itself and other primordial “RNA genes”. However, it is not known how such a complex function […]
Structure of ParM reveals how plasmids are maintained in bacteria
The structure of the actin-like protein ParM in different states has been revealed by Tanmay Bharat and Jan Löwe in collaboration with Garib Murshudov from the LMB and Carsten Sachse from the EMBL. Using electron cryo-microscopy (cryo-EM) they determined the structure of ParM to almost atomic resolution and revealed how this protein carries out the […]
New strategy for treating tuberculosis – inhibition of the DNA replication proofreader
In their latest research on the DNA replication machinery from Mycobacterium tuberculosis, Ulla Lang in Meindert Lamers’ group in the LMB’s Structural Studies Division and collaborators at the Harvard School of Public Health in Boston, have revealed the existence of a novel exonuclease that proofreads new DNA as it is synthesised. This newly discovered proofreader […]
Discovering the origins of biological timekeeping
The existence of an endogenous daily clock in humans is well known: it is what drives the 24-hour sleep/wake rhythm to match the daily cycle of night and day. That this biological circadian rhythm occurs in individual cells, and that they continue to ‘tick’ in a petri dish is now well-accepted scientifically, but the mechanism […]
First step in preventing neurodegenerative diseases
The deposition of misfolded proteins is a defining feature of many age-dependent human diseases, including the increasingly prevalent neurodegenerative diseases. Why this happens is unclear. Cells normally strive to ensure that proteins are correctly folded by using powerful and sophisticated mechanisms to maintain protein homeostasis under adverse conditions. However, with age, the cellular defence systems […]