• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

The smell of food ‘wakes up’ the zebrafish visual system

Published on 11 July, 2013

New research from Leon Lagnado’s group in the LMB’s Neurobiology Division shows how food-related smells ‘re-tune’ zebrafish vision by making the retina more sensitive to moving objects, such as the prey that zebrafish eat. The way the brain processes information from one sense depends on the activity of other senses. For instance, we all know […]

Work on ubiquitination reveals insights into disease

Published on 11 June, 2013

Recent work carried out by David Komander’s group in the LMB’s Protein and Nucleic Acid Chemistry Division, and published in two separate papers, has provided insight into human disease and the role played by ubiquitination, a process that affects many fundamental cellular processes. Work in David’s group aims to understand the cellular machinery for specific […]

Insights into spliceosomal activation and molecular pathology of retinitis pigmentosa eye disease

Published on 31 May, 2013

Work published in the journal Structure by Kiyoshi Nagai’s group in the LMB’s Structural Studies Division, has provided further detailed information on the structure and role of proteins at the active site of the spliceosome, and may also help to explain the molecular pathology of the eye disease, retinitis pigmentosa type 13 (RP13). The spliceosome […]

Watching neurons transmit visual information

Published on 21 May, 2013

Work in Leon Lagnado’s group in the LMB’s Neurobiology Division is showing how synapses transmit visual signals in the retina of zebrafish. The group designed fluorescent proteins that light up when synapses are active and made transgenic zebrafish expressing these proteins in retinal neurons. They then used a multiphoton microscope to directly observe the activity […]

New mechanism in the body’s timekeeping revealed

Published on 30 April, 2013

Our cycle of sleep and wakefulness is controlled by a daily (circadian) body clock in our brain. When this cycle happens in a regular way people function well, but when this cycle is disturbed it can lead to a severely disrupted life. The suprachiasmatic nucleus (SCN)  is part of the body clock and individual neurons of […]

Understanding the mechanism of the nucleocytoplasmic transport cycle

Published on 29 April, 2013

New research, from a team of scientists in the LMB’s Structural Studies Division and the Texas A&M Health Science Center, illustrates the molecular mechanism behind a fundamental cellular process. The research, published in PNAS, provides new insights into the way in which components of the nuclear protein transport machinery move through nuclear pores. Nuclear pores […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • Interim pages omitted …
  • Page 62
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok