• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events

Insight on Research

Insight into bacterial cell division: Architecture of the FtsZ ring

Published on 23 December, 2014

When a bacterial cell divides, the cell membrane and cell envelope have to pinch together in the middle of the cell to separate it into two daughter cells. A ring of proteins called the divisome constricts, cleaving the cell in two. The protein FtsZ is a crucial component of this ring and many FtsZ subunits […]

Golden grids for electron cryo-microscopy

Published on 12 December, 2014

Recent exciting advances in electron cryo-microscopy (cryo-EM) have allowed scientists to find very detailed structures of some proteins. Still, determining the structure of many proteins remains too difficult for cryo-EM, as the images are too noisy to use for structure determination. Lori Passmore and Chris Russo from the LMB’s Structural Studies Division have designed new […]

Signposts for organelle identity – new Rab GTPase effectors found

Published on 9 December, 2014

Cells contain specialised membrane-bound compartments called organelles, which are vital to the cell as they allow it to separate different biochemical reactions that otherwise might interfere with each other. To function correctly, these intracellular compartments need to recruit proteins from the cytoplasm, and since every organelle has a specific role, each one needs a particular […]

Structure of human dynein shows the powerstroke mechanism

Published on 2 December, 2014

Dyneins are a family of motor proteins that move along microtubules powered by chemical energy from ATP. Andrew Carter and his group in the LMB’s Structural Studies Division have solved the structure of a dynein protein bound to a chemical that mimics the shape of ATP, and have shown for the first time how the […]

Evolution of catalysis: alternatives to nature’s molecules

Published on 1 December, 2014

Life on Earth depends on catalysis. Chemical transformations essential for cellular function are too sluggish to happen spontaneously at ambient temperatures and pressures, thus nature has developed myriad catalysts (enzymes) that accelerate the many key reactions necessary for life. Today, proteins are largely responsible for this role, although nucleic acids (RNA and DNA), in addition […]

Local brain “clock” revealed for the first time

Published on 17 November, 2014

Specific loss of Bmal1 (green cells) in histaminergic cells (red cells) within the TMN (Images from Prof Bill Wisden lab)It is well known that all animals have an internal circadian clock that responds to daily environmental changes of light and darkness, to inform the body to rest and sleep, or wake and be active. As […]

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Interim pages omitted …
  • Page 62
  • Go to Next Page »

Primary Sidebar

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok