When the first multicellular organisms evolved, their cells needed to communicate with each other to control their growth and development. Matthew Freeman’s group from the LMB’s Cell Biology Division, led by the postdoc Markus Zettl, has shown that one way they did this was to exploit much more ancient protein quality control machinery Matthew’s group […]
Insight on Research
A small molecule to correct protein folding defects.
The deposition of misfolded proteins is a central characteristic of many devastating diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic lateral sclerosis and prion diseases. In principle, improving the cells’ ability to deal with misfolded proteins should reduce the pathology in these diverse neurodegenerative diseases. A study led by Anne Bertolotti has identified […]
First X-ray crystal structure of dynein motor domain
The first X-ray crystal structure of the motor domain of cytoplasmic dynein, a protein that uses the cellular energy from ATP to walk along microtubule tracks that run throughout the cell, has been solved. Cytoplasmic dynein moves numerous cargos around the cell including proteins and RNAs that set up the cell polarity, membraneous organelles, aggregated […]
Propagation of mutant SOD1 misfolding.
Amyotrophic lateral sclerosis (ALS) is caused by the progressive dysfunction of specific nerve cells that control muscle movement. It belongs to a group of devastating neurodegenerative diseases including Alzheimer’s, Parkinson’s, Huntington’s and prion diseases. Each disease is caused by the progressive accumulation of specific proteins in an aberrant, misfolded shape. The formation of the protein […]
Breakthrough in Fanconi Anaemia research.
A group led by KJ Patel from the LMB, together with collaborators at the Wellcome Trust Sanger Institute and CRUK Cambridge Research Institute (CRI), have developed the first model for the human genetic illness Fanconi Anaemia (FA). This genetic condition results in abnormal development, bone marrow failure and a huge lifetime risk of developing cancer. […]
Understanding how hormones activate G protein-coupled receptors.
In a recent issue of Nature, the groups of Chris Tate and Andrew Leslie in the LMB’s Structural Studies Division, in collaboration with Gebhard Schertler now at the Paul Scherrer Institut, Switzerland, have reported the determination of the structures of the β1 adrenergic receptor (β1AR), a GPCR, when bound to four different clinically relevant agonists. […]