• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > News & Events > Insight on Research

Insight on Research

  • All
  • 2025
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010

How the earliest life on Earth may have replicated itself

Liquid brine containing replicating RNA molecules is concentrated in the cracks between ice crystals, as seen with an electron microscope

Scientists in Philipp Holliger’s group in the LMB’s PNAC Division have created a new type of genetic replication system to demonstrate how the first life on Earth – in the form of RNA – could have replicated itself.
Our understanding of life’s early history is limited but a popular theory for the earliest stages of life on Earth is that it was founded on strands of RNA, a chemical cousin of DNA.

More…

Published on 16th May, 2018

Next generation sequencing and machine learning provide insights into the dark proteome

: IDR-Screen helps to identify functional segments in disordered protein regions (dark proteome)

Work from Madan Babu’s group in the LMB’s Structural Studies Division, spearheaded by Charles Ravarani and in collaboration with Alexandre Erkine’s group at Butler University, has for the first time harnessed next generation sequencing and machine learning to develop a high throughput screen to uncover disordered regions of proteins that are functional within cells.
Proteins, the molecular machines of the cell, are formed from chains of amino acids.

More…

Published on 14th May, 2018

Understanding how TRIM21 is regulated during viral infection

During a viral infection, our immune system produces potent antiviral molecules which are hugely important for restoring us to health. However, if made at the wrong time these molecules can be damaging, leading to autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. Our antiviral response must therefore be tightly controlled so that we are protected against infection but do not suffer from autoimmune disease.

More…

Published on 19th April, 2018

Reversing a decline in cellular transport in ageing nerve cells

Fruit fly wing

Ageing is characterised by a decline in function at both the cellular and organismal level and is the major risk factor for several neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease. One of the key cellular processes that is affected during ageing is the transport system that nerve cells use to deliver components to different locations.

More…

Published on 29th March, 2018

Speeding up cargo deliveries in the cell

dynein/dynactin/BICDR1 complex

Cytoplasmic dynein-1, a protein that transports cargos along microtubule tracks throughout the cell, binds to dynactin and cargo adaptor proteins to carry its cargos over long distances. Various cargos use different adaptors to recruit dynein for transport. Until now, it has not been clear whether all cargos recruit dynein in the same way and how different cargo adaptors act.

More…

Published on 8th February, 2018

Uncovering how alcohol-derived metabolites damage the genome of stem cells

Lack of the two-tier protection system leads to genomic instability and mutations in blood stem cells.

Previous work from KJ Patel’s group in the LMB’s PNAC Division revealed that aldehydes – such as acetaldehyde, a by-product of alcohol metabolism – can damage our DNA. Further research by the group showed that our cells are protected against these toxic aldehydes using a two-tier protection system: enzymes that remove these aldehydes (tier-1) and DNA repair that fixes the damage they cause (tier-2).

More…

Published on 4th January, 2018
  • «
  • ‹
  • 33
  • 34
  • 35
  • 36
  • 37
  • ›
  • »

Primary Sidebar

News & Events

  • Insight on Research
  • LMB News
  • LMB In The News
  • LMB Alumni News
  • Public Engagement
    • Supporting Education
      • I’m a scientist, get me out of here!
      • London International Youth Science Forum
    • LMB on the Road
      • Cambridge Festival
      • Royal Society Summer Science Exhibitions
      • Big Biology Day
      • LifeLab
    • Events at the LMB
      • Artists in Residence: Home in the Service of Science
      • LMB Open Day 2017
      • STEM in Song
    • Resources
      • Image Game
    • LMB Science Stories
      • Electron Cryo-microscopy
      • Tau and Alzheimer’s
    • Past Events
      • MRC Festival of Research
      • Crystal Growing Competition
        • Past Winners
        • MRC Lab Visits
      • The WormWatch Lab
    • Contact Us
  • Scientific Seminars
    • LMB Named Lectures
  • LMB Exhibitions
    • Sample holders for electron cryomicroscopy
    • Humira
    • Curios of 60 years of the LMB
  • Scientific Training
  • Information for Journalists
  • Scientific Glossary
  • Photographs
  • LMB 365
  • Newspaper Archive

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok