• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > News & Events > Insight on Research

Insight on Research

  • All
  • 2025
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010

Instinctive and learned responses to smells are controlled by a single brain circuit in flies

A synaptic-resolution electron microscopy reconstruction of the circuit integrating instinctive (green) and learned (magenta) signals in the same neurons

As well as having instinctive responses to their environment, nearly all animals can learn to associate particular sights, smells, or sounds with rewards or negative consequences. It had been thought that two separate brain centres control these two different types of responses; innate and learned.

More…

Published on 20th September, 2018

The structure of retromer: a molecular machine packing cargo at the cell’s logistics hub

Artistic blueprint of a slice through a retromer-coated membrane tubule. Retromer forms arches around the surface of the tube.

Internal transport between different cellular compartments is a complicated process requiring formation of transport carriers, and sorting the right cargo into those carriers, for delivery to the correct part of the cell. Retromer is a protein complex that forms transport carriers departing from the cell’s central sorting station, the endosome. The architecture of the complex and how it contributes to carrier formation and cargo sorting was unknown.

More…

Published on 18th September, 2018

How cells selectively enhance gene expression in response to stress

Yeast cells under stress

Cells need to respond quickly when they encounter stress conditions in order to avoid consequences such as cell death. New research from Madan Babu’s group in the LMB’s Structural Studies Division has identified a mechanism by which cells can enhance the expression of stress-response genes by increasing the efficiency of protein synthesis specifically for these genes.

More…

Published on 5th September, 2018

Tau filament structures differ between neurodegenerative diseases

Narrow Pick filaments.

Michel Goedert’s group in the LMB’s Neurobiology Division and Sjors Scheres’ group in the LMB’s Structural Studies Division have used electron cryo-microscopy (cryo-EM) to solve the structures of tau filaments from patients with the frontotemporal dementia Pick’s disease.

More…

Published on 30th August, 2018

How neuropeptide signalling controls sensitisation in response to touch in C. elegans

C. elegans co-labelled with markers for neurotransmitter and neuropeptide receptor expression.

When an animal detects a stimulus that might signal danger, this primes sensory and motor organs to respond more readily to further stimulation. This is called sensitisation and is one aspect of the more general phenomenon of arousal, in which animals become more alert and can respond more effectively to potential threats. However, the basic principles of how arousal is triggered have not been fully understood.

More…

Published on 24th August, 2018

How flat sheets of cells become tubular organs: observing cellular dynamics from 2D to 3D

Embryo salivary gland development

Many complex tubular organs, including kidney, lung, the intestine and several glands, form from a flat layer of cells during animal development. Failure of proper tube formation underlies severe congenital malformations such as Spina Bifida, and the failure to maintain tube architecture for instance underlies Polycystic Kidney Diseases. How tissues transition from flat 2D structures to 3D tubes is poorly understood.

More…

Published on 3rd August, 2018
  • 1
  • 2
  • 3
  • 4
  • 5

Primary Sidebar

News & Events

  • Insight on Research
  • LMB News
  • LMB In The News
  • LMB Alumni News
  • Public Engagement
    • Supporting Education
      • I’m a scientist, get me out of here!
      • London International Youth Science Forum
    • LMB on the Road
      • Cambridge Festival
      • Royal Society Summer Science Exhibitions
      • Big Biology Day
      • LifeLab
    • Events at the LMB
      • Artists in Residence: Home in the Service of Science
      • LMB Open Day 2017
      • STEM in Song
    • Resources
      • Image Game
    • LMB Science Stories
      • Electron Cryo-microscopy
      • Tau and Alzheimer’s
    • Past Events
      • MRC Festival of Research
      • Crystal Growing Competition
        • Past Winners
        • MRC Lab Visits
      • The WormWatch Lab
    • Contact Us
  • Scientific Seminars
    • LMB Named Lectures
  • LMB Exhibitions
    • Sample holders for electron cryomicroscopy
    • Humira
    • Curios of 60 years of the LMB
  • Scientific Training
  • Information for Journalists
  • Scientific Glossary
  • Photographs
  • LMB 365
  • Newspaper Archive

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok