![](https://www2.mrc-lmb.cam.ac.uk/wordpress/wp-content/uploads/fly-brain-images-with-labelled-neurons-150x150.jpg)
We, and all animals, sense things in our surroundings and react to them, but how a sensory input reaching the brain is transformed into behaviour is still unknown for all but the most simple reflexes.
MRC Laboratory of Molecular Biology
One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.
Our genetic code is translated from DNA into proteins through an intermediate molecule: messenger RNA (mRNA). One major way in which synthesis of proteins can be regulated is through turnover of mRNA; less protein is produced from a short-lived mRNA molecule. The signal for the degradation of a particular mRNA is the removal of a stretch of adenosines (As) at the end of the molecule, known as the poly(A) tail.
Jason Chin’s group in the LMB’s PNAC Division have, for the first time, synthesised the entire genome of a commonly used model organism, the bacterium E. coli. There has only been one previous example of synthesis of an entire genome: for the Mycoplasma bacterial genome, which consists of approximately 1 million bases. Over the last 5 years, Jason’s group have developed a robust method for assembly of large pieces of synthetic DNA. This has enabled them to synthesise the entire E.
Much of the communication in cells is dependent on the presence of cell-surface receptors that detect signals in the form of messenger molecules called ligands. One large family of receptors are G protein-coupled receptors (GPCRs). This family includes a number of important drug targets, so understanding their structure and function are important. Their name derives from the fact that the receptor must couple with a G protein in order to function.
We are regularly reminded that a balanced diet is key to staying healthy and preventing disease. What is less well known is that the time at which we eat may also be an essential to long-term health.
Central to this are circadian rhythms – commonly referred to as ‘body clocks’. These are endogenous daily rhythms that occur in every cell of the body; affecting a wide range of physiological processes, from when we sleep, to hormone levels, to how quickly we metabolise drugs.
DNA and RNA both have a highly negatively charged backbone and it was widely believed that such a charged structure is essential for their function as information storage molecules. Philipp Holliger’s group, in the LMB’s PNAC Division, in collaboration with researchers at NIH in the USA and at IRB in Barcelona, have challenged this conjecture by producing a DNA-like genetic polymer that is both uncharged and can store and transfer genetic information.