AMPA receptors are among the most commonly found receptor in the nervous system and play an important role during memory formation and learning. They are composed of four subunits with various possible combinations. Although AMPA receptors act predominantly as heteromeric complexes, structural studies to date have focused on assemblies made from four copies of the same subunit.
Architecture of a prominent neurotransmitter receptor involved in memory formation and learning revealed
How detection of an invading Salmonella bacterium leads to formation of autophagosomes
Most historical research on immunity has focused on the dedicated cells of our immune system, but, ever since the first single-celled organisms evolved, cells have had to defend themselves against infection. Thus we have a more ancient form of cellular immunity, termed xenophagy, that allows cells throughout our body to capture bacteria that have invaded their cytosol and degrade those invaders inside specialised vesicles termed autophagosomes.
Identification of a potential therapeutic target in colorectal cancer initiation
Colorectal cancer is one of the most common cancers in the UK. Virtually all colorectal cancers are initiated by hyperactive signalling through the Wnt/β-catenin pathway. This can occur due to activating mutations in the protein β-catenin or inactivation of Adenomatous Polyposis Coli (APC), a protein that normally drives degradation of β-catenin.
Engineering dynein to move backwards to understand how it moves forwards
Dyneins are a family of motor proteins that run along the microtubule tracks that make up the cytoskeleton. They drive beating of cilia/flagellar and transport of cargos, contributing to processes such as clearing mucus, allowing sperm to swim, positioning organelles and clearing up misfolded proteins. All members of the family move along microtubules in the same direction, but it was not known why this is the case.
Cutting-edge microscopy reveals how apoptosis starts in the mitochondria
Apoptosis is a highly controlled form of cell death important for cell turnover during life, in embryonic development, including separation of fingers and toes, and as a cellular response against cancer. Although mitochondria are more widely known for their role as the energy-generating “powerhouses” of the cell, they also have an important role in initiating apoptosis: rupture of the mitochondria releases factors that contribute to an accelerating cascade towards cell death.
A master regulator of cell movement in response to chemical signals
Movement of cells is vital during processes such as wound healing and development. Where cells move is usually controlled by gradients of chemicals in the environment that guide them to particular destinations. These attractive chemicals, or chemoattractants, are detected by receptors on the cell surface, which signal to the cytoskeleton to control movement in the appropriate direction.