Miscarriages and genetic disorders, such as Down’s syndrome, are often caused by errors when an egg develops from its progenitor cell, the oocyte. Most defects occur during meiosis, a specialised form of cell division that leads to the formation of an egg. To ensure the egg cell has exactly the right number of chromosomes, an oocyte has to separate away and remove half of its chromosomes.
Human egg defects caused by error-prone spindle assembly
Encoding phosphoserine allows production of phosphorylated proteins
Protein phosphorylation is a key post-translational modification that is used to regulate many essential cell processes. A phosphate group is added to a specific site in a protein to switch that protein on or off, depending on its role. It has been challenging to understand the function of protein phosphorylation because it is difficult to make phosphorylated proteins. However, a new method developed by Jason Chin’s group in the LMB’s PNAC Division could revolutionise this research.
BOLT, a fast and selective way to regulate protein function in live cells
Small molecules are often used to regulate the functions of proteins and provide many drugs and tools for understanding biological pathways. However, selectively controlling a specific target protein within living cells is a major challenge. Jason Chin’s group from the LMB’s PNAC Division have created a new technique called BOLT that can selectively regulate specific proteins inside cells that could not previously be targeted.
Freeze-thaw cycles turn life’s simple building blocks into functional macromolecules
Structure of ParM reveals how plasmids are maintained in bacteria
The structure of the actin-like protein ParM in different states has been revealed by Tanmay Bharat and Jan Löwe in collaboration with Garib Murshudov from the LMB and Carsten Sachse from the EMBL. Using electron cryo-microscopy (cryo-EM) they determined the structure of ParM to almost atomic resolution and revealed how this protein carries out the process of plasmid DNA segregation in growing bacterial cells.
New strategy for treating tuberculosis – inhibition of the DNA replication proofreader
In their latest research on the DNA replication machinery from Mycobacterium tuberculosis, Ulla Lang in Meindert Lamers’ group in the LMB’s Structural Studies Division and collaborators at the Harvard School of Public Health in Boston, have revealed the existence of a novel exonuclease that proofreads new DNA as it is synthesised. This newly discovered proofreader prevents mutations in the bacterium and could be a successful drug target.