Recent exciting advances in electron cryo-microscopy (cryo-EM) have allowed scientists to find very detailed structures of some proteins. Still, determining the structure of many proteins remains too difficult for cryo-EM, as the images are too noisy to use for structure determination. Lori Passmore and Chris Russo from the LMB’s Structural Studies Division have designed new specimen support grids, made of pure gold, that improve the microscope image quality.
Golden grids for electron cryo-microscopy
Signposts for organelle identity – new Rab GTPase effectors found
Cells contain specialised membrane-bound compartments called organelles, which are vital to the cell as they allow it to separate different biochemical reactions that otherwise might interfere with each other. To function correctly, these intracellular compartments need to recruit proteins from the cytoplasm, and since every organelle has a specific role, each one needs a particular set of proteins.
Structure of human dynein shows the powerstroke mechanism
Dyneins are a family of motor proteins that move along microtubules powered by chemical energy from ATP. Andrew Carter and his group in the LMB’s Structural Studies Division have solved the structure of a dynein protein bound to a chemical that mimics the shape of ATP, and have shown for the first time how the dynein can ‘walk’ along the microtubule.
Dynein proteins carry various important cargos to different parts of the cell, and are crucial to correct cell function.
Evolution of catalysis: alternatives to nature’s molecules
Local brain “clock” revealed for the first time
Specific loss of Bmal1 (green cells)
in histaminergic cells (red cells)
within the TMN
(Images from Prof Bill Wisden lab)It is well known that all animals have an internal circadian clock that responds to daily environmental changes of light and darkness, to inform the body to rest and sleep, or wake and be active.
Golgin proteins specify destination of vesicle traffic
Inside our cells are many small transport vesicles that act as carriers to move proteins and lipids around the cell. To maintain cell function, these vesicles have to deliver their cargo to exactly the right destination. New research by Mie Wong from Sean Munro’s group in the LMB’s Cell Biology Division has shown that when specific vesicles arrive at their correct site, they are captured and tethered by long golgin proteins, ensuring that the cargo is delivered to the right place.