Research from the LMB’s PNAC Division has revealed a new mechanism that cells use to fight infection. Jerry Tam and other members of Leo James’s group have discovered that the protein complement C3, which covalently labels viruses and bacteria in the bloodstream, activates a potent immune response upon cell invasion.
Molecular biologists chemically modify proteins to label them for easy identification.
New mechanism of antiviral immunity discovered
mRNA on the move – localisation can affect cell signalling and regulation
New research from Madan Babu’s group in the LMB’s Structural Studies Division, in collaboration with Toby Gibson from the European Molecular Biology Laboratory in Heidelberg, has shown that the targeted movement of mRNA molecules to allow proteins to be synthesised in specific locations has important implications in cell signalling and development.
The mother’s role in protecting the fetal genome from aldehyde damage is revealed.
Whilst a mother’s metabolism provides essential nutrients to enable embryonic development, both mother and embryo can also produce reactive metabolites that can damage DNA. Research undertaken by Nina Oberbeck in KJ Patel’s group, in the LMB’s PNAC Division, has uncovered how the embryo is protected from these genotoxins.
Birth defects are common and are a substantial burden to human health, but their causes are complex and often due to many factors.
How cells adapt proteasome assembly under stress conditions
Research carried out by Anne Bertolotti’s group in the LMB’s Neurobiology Division has identified a novel protein, named Adc17, that acts as an inducible chaperone to help cells make more proteasome when needed.
Cells and organisms constantly need to adapt to maintain protein homeostasis under adverse stress conditions in order to avoid cell death. Cells have evolved numerous and sophisticated protein quality control systems to adapt to changes in their environment.
Revealing the secrets of human gamma-secretase by cryo-EM
The latest advances in cryo-electron microscopy have enabled Sjors Scheres’ group, from the LMB’s Structural Studies Division, together with collaborators from Beijing in China, to solve the structure of human gamma-secretase, a membrane protein complex that has an important role in Alzheimer’s disease.
Gamma-secretase is made up of four different proteins which are all embedded within the cell membrane.
How to get your (dynein) motor running
A cross divisional collaboration at the LMB between the groups of Simon Bullock, in Cell Biology, and Andrew Carter, in Structural Studies, has provided new insight into the activation of the large molecular motor dynein, a critical component of the transport system that operates within cells.
The cells within living organisms contain an elaborate transport system that moves different components to the right part of the cell at the right time.