Cells contain specialised membrane-bound compartments called organelles, which are vital to the cell as they allow it to separate different biochemical reactions that otherwise might interfere with each other. To function correctly, these intracellular compartments need to recruit proteins from the cytoplasm, and since every organelle has a specific role, each one needs a particular set of proteins.
Signposts for organelle identity – new Rab GTPase effectors found
Structure of human dynein shows the powerstroke mechanism
Dyneins are a family of motor proteins that move along microtubules powered by chemical energy from ATP. Andrew Carter and his group in the LMB’s Structural Studies Division have solved the structure of a dynein protein bound to a chemical that mimics the shape of ATP, and have shown for the first time how the dynein can ‘walk’ along the microtubule.
Dynein proteins carry various important cargos to different parts of the cell, and are crucial to correct cell function.
Evolution of catalysis: alternatives to nature’s molecules
Local brain “clock” revealed for the first time
Specific loss of Bmal1 (green cells)
in histaminergic cells (red cells)
within the TMN
(Images from Prof Bill Wisden lab)It is well known that all animals have an internal circadian clock that responds to daily environmental changes of light and darkness, to inform the body to rest and sleep, or wake and be active.
Golgin proteins specify destination of vesicle traffic
Inside our cells are many small transport vesicles that act as carriers to move proteins and lipids around the cell. To maintain cell function, these vesicles have to deliver their cargo to exactly the right destination. New research by Mie Wong from Sean Munro’s group in the LMB’s Cell Biology Division has shown that when specific vesicles arrive at their correct site, they are captured and tethered by long golgin proteins, ensuring that the cargo is delivered to the right place.
Unexpected role of Histone H3.3 in replication of damaged DNA
An unexpected finding from Julian Sale’s group in the LMB’s PNAC Division has revealed that a specialised histone protein called H3.3 is needed for packaging UV-damaged DNA during replication. Use of this histone may act as a flag to help the cell find and repair the damage once replication has been completed, potentially reducing the chance of harmful mutations.
Every time a cell divides, the double-stranded DNA needs to be copied with the DNA strands separated in a replication fork.