New research, resulting from a collaboration between two groups, led by Sarah Teichmann and Madan Babu, in the LMB’s Structural Studies Division, advances our understanding of the interplay between the two most abundant classes of DNA binding proteins that are responsible for regulating physiological diversity in organisms.
New Insight on General Mechanism Behind Gene Expression
Research shows the power of exploiting publicly available data to reveal new principles in biology
A comprehensive investigation of several large-scale datasets, led by M. Madan Babu’s group in the LMB’s Structural Studies Division, provides new insights into tissue-specific splicing – the mechanism responsible for increasing the functional diversity of proteins and for attaining tissue identity during development.
Short evolutionary path from DNA to RNA polymerases revealed
New research, led by Philipp Holliger’s group in the LMB’s PNAC Division, has shed new light on the mechanism by which DNA polymerases – the enzymes responsible for replicating genomes in all animals, fungi and bacteria – are able to ensure faithful DNA replication while actively excluding damaged and/or non-cognate nucleotides from the genome.
Development of new genetic polymers
A group of researchers, led by Philipp Holliger in the LMB’s PNAC Division, have created the first synthetic molecules that, alongside the natural molecules DNA and RNA, are capable of storing and replicating genetic information.
Vitor Pinheiro and colleagues from Philipp’s group used sophisticated protein engineering techniques to adapt enzymes, that in nature synthesise and replicate DNA, to establish six new genetic systems based on synthetic nucleic acids.
New insight on how sensory neurons control sustained responses to environmental dangers
A group of researchers, led by Mario de Bono’s group in the LMB’s Cell Biology division, have extended our understanding of how animals respond to long-term dangers at a molecular level – which may help in explaining how this process fails in a range of human diseases and medical conditions.
Sensory neurons send the brain a barrage of environmental information. Most of these neurons react briefly to short-term stimuli and ignore the stimulus if it persists.
Nuocyte research points to new strategies to treat asthma
A group of collaborative researchers, led by Andrew McKenzie’s group in the LMB’s PNAC Division, have identified new processes that lead to the development of a novel cell (the nuocyte) implicated in allergies.
Nuocytes play a critical role in immune responses to parasitic worm infection. However, they also initiate the early generation of immune responses that can lead to asthma or other allergic conditions.