Determining the structure of proteins and other biomolecules at the atomic level is central to understanding many aspects of biology. X-ray crystallography is the best known technique for structural biology but, as its name suggests, it only works with samples that can be crystallized. Electron cryo-microscopy (cryo-EM) can be used to determine atomic structures of biomolecules that cannot be crystallized, but until now achieving high-resolution cryo-EM structures has been difficult.
Ribosome structure determined to near-atomic resolution by cryo-EM
The guardian of the transcriptome
New research, from a team of scientists in the LMB’s Structural Studies Division and the EMBL-European Bioinformatics Institute, has uncovered how our genome keeps the effects of mutations in check. The discovery, published in the journal Cell, explains how new proteins are created, helping to deliver useful insights into the evolution of the human genome. The team’s findings may also help in improving our understanding of diseases such as cancer and neurodegeneration.
Salt chemosensation in worms linked to human deafness
Transmembrane channel-like (TMC) genes encode a conserved family of predicted membrane proteins in animals. The founding member, human Tmc1, is strongly linked to deafness, being expressed in cochlear hair cells and known to be required for their function. However, the precise molecular function of these proteins has until now been unknown.
Architecture of the spliceosome active site
Research in the group of Kiyoshi Nagai in the LMB’s Structural Studies Division has for the first time provided detailed information on the structure and role of proteins at the active site of the spliceosome, which is responsible for the excision of introns from messenger-RNA (mRNA) precursors in the nucleus.
The spliceosome is a large and dynamic RNA-protein assembly.
First high-resolution 3D structure of a DNA origami object
Many processes in biology rely on the relative position and orientation of interacting molecules. However, because of their small size and the constant thermal fluctuations that they experience in solution, molecules are very difficult to observe and control. In the field of nano-technology, researchers have developed a technique to construct nano-scaled 3D objects out of DNA.
Fruit fly research highlights key mechanism in organ formation
Katja Röper, Independent Investigator Scientist in the LMB’s Cell Biology Division, has discovered a key mechanism of tissue and organ formation in fruit flies that might also apply in vertebrates.
Many organs in both vertebrates and invertebrates, such as the gut, liver, kidney, vasculature and lung, are tubular in structure. The formation of tubular structures through processes collectively called tubulogenesis is a key process of organ formation in all animals.