A group led by KJ Patel from the LMB, together with collaborators at the Wellcome Trust Sanger Institute and CRUK Cambridge Research Institute (CRI), have developed the first model for the human genetic illness Fanconi Anaemia (FA). This genetic condition results in abnormal development, bone marrow failure and a huge lifetime risk of developing cancer. At present the only long-term treatment for FA is bone marrow transplantation.
Breakthrough in Fanconi Anaemia research.
Understanding how hormones activate G protein-coupled receptors.
In a recent issue of Nature, the groups of Chris Tate and Andrew Leslie in the LMB’s Structural Studies Division, in collaboration with Gebhard Schertler now at the Paul Scherrer Institut, Switzerland, have reported the determination of the structures of the β1 adrenergic receptor (β1AR), a GPCR, when bound to four different clinically relevant agonists.
Bizarre love triangle: first amoebal sex-determining system discovered
The social amoeba Dictyostelium discoideum is used widely in the laboratory as a convenient ‘model organism’ to help discover, among other things, how cells move, and how they fight bacterial infection. In the soil under your feet and in forest leaf litter, where it normally lives, this organism also goes through an enigmatic sexual cycle.
LMB scientists redefine how our immune system responds to viruses
Landmark research led by Dr Leo James from the LMB’s PNAC Division has discovered that antibodies can fight viruses from within infected cells. This finding transforms the previous scientific understanding of our immunity to viral diseases like the common cold, ‘winter vomiting’ and gastroenteritis. It also gives scientists a different set of rules that pave the way to the next generation of antiviral drugs.
Understanding how toxins can affect the mechanism of the ribosome
Dr Venki Ramakrishnan’s lab from the LMB’s Structural Studies Division have uncovered the molecular mechanism by which toxins such as ricin and alpha-sarcin inhibit protein synthesis in cells. It was known that these toxins act on a highly conserved RNA loop in the ribosome, the molecular machinery which synthesises proteins in both prokaryotic and eukaryotic cells.
Scientists ‘give botox a facelift’ to improve its use in medicine
Researchers led by Dr Bazbek Davletov at the LMB have developed a new method of joining and rebuilding molecules in the laboratory and have used it to refine Clostridium botulinum neurotoxin type A (more commonly known as botox). This new approach will enable researchers to improve its use as a treatment for diseases such as Parkinson’s, cerebral palsy and chronic migraine. It also opens up new avenues to develop new forms of the toxin which could be used as a method of long-term pain relief.