Many of our cells can engulf solid particles and liquid droplets to ingest (swallow) them. Phagocytes ingest invading bacteria and dead cells during infections in the same way that our single-celled distant ancestors engulfed food that they needed for growth. A core group of genes is found within these ancient organisms that is also important for controlling phagocytosis and cell growth in humans.
Neurofibromin controls food uptake by hungry amoebae
hiCLIP : New method finds structures of mRNA molecules
Common origins of RNA, proteins and lipids on earth
Dynactin complex structure revealed by electron cryo-microscopy
Dynactin is a protein complex that activates the dynein motor protein, enabling intracellular transport. It is extremely flexible and has proved very difficult to study by conventional crystallography methods. Now for the first time, research carried out by Andrew Carter and his group in the LMB’s Structural Studies Division, has revealed the structure of this large dynactin complex, using electron cryo-microscopy (cryo-EM).
Unfinished proteins: how to find a needle in the haystack
A research team from the LMB’s Cell Biology division, working with colleagues from the Structural Studies division, has revealed how cells are able to find and tag for degradation the partially synthesised proteins generated when ribosomes occasionally stall.
Cells make more than a hundred thousand new proteins every minute. Once in a while, one of the ribosomes making these proteins stalls, leaving an unfinished protein fragment.
Insight into bacterial cell division: Architecture of the FtsZ ring
When a bacterial cell divides, the cell membrane and cell envelope have to pinch together in the middle of the cell to separate it into two daughter cells. A ring of proteins called the divisome constricts, cleaving the cell in two. The protein FtsZ is a crucial component of this ring and many FtsZ subunits join together in a chain forming long filaments. These FtsZ filaments are anchored to the membrane by another protein, FtsA, so that the membrane also constricts when the FtsZ ring closes.