Our laboratory uses electron cryo-tomography (cryo-ET) to study prokaryotic cell surfaces at the atomic level. We develop novel correlative imaging and image processing techniques to support our inquiries. Surface molecules mediate cellular interactions with the environment and play important roles in key processes including cell adhesion, biofilm formation and antibiotic tolerance in pathogenic bacteria.
A major focus of our work is to understand mechanistically how multicellular communities of microbes are formed. Multicellularity arises due to cellular interactions formed by surface molecules. We study how such surface molecules allow transition of microbes from a unicellular to a multicellular state. While structural biology of many cell surface molecules reveals fundamental information about bacterial and archaeal multicellularity, our work has clear biomedical relevance. For example surface molecules allow pathogenic bacteria such as P. aeruginosa to evade antibiotics with biofilm formation. Indeed, we have targeted the fundamental molecular mechanisms revealed in our work to disrupt multicellular microbial biofilms.
Selected Papers
- Kügelgen, A.v., Cassidy, C.K., Dorst, S.v., Pagani, L.L., Batters, C., Ford, Z., Löwe, J., Alva, V., Stansfeld, P.J., Bharat, T.A.M. (2024)
Membraneless channels sieve cations in ammonia-oxidizing marine archaea
Nature 630: 230-236 - Böhning, J., Graham, M., Letham, S.C., Davis, L.K., Schulze, U., Stansfeld, P.J., Corey, R.A., Pearce, P., Tarafder, A.K., Bharat, T.A.M. (2023)
Biophysical basis of filamentous phage tactoid-mediated antibiotic tolerance in P. aeruginosa
Nat Commun 14 (1): 8429 - Böhning, J., Ghrayeb, M., Pedebos, C., Abbas, D.K., Khalid, S., Chai, L., Bharat, T.A.M. (2022)
Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms.
Nat Commun 13: 7082 - Melia, C., Bolla, J.R., Lanwermeyer, S.K., Mihaylov, D., Hoffmann, P.C., Huo, J., Wozny, M.R., Elfari, L.M., Böhning, J., Owens, R.J., Robinson, C.V., O’Toole, G.A., Bharat, T.A.M. (2021)
Architecture of cell-cell junctions in situ reveals a mechanism for bacterial biofilm inhibition.
Proc Natl Acad Sci U S A 118(31): e2109940118 - von Kügelgen, A., Tang., H., Hardy, G.G., Kureisaite-Ciziene, D., Brun, Y.V., Stansfeld, P.J., Robinson, C.V., and Bharat, T.A.M. (2020)
In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer
Cell 180(2): 348-358 - Tarafder, A.K., et al., von Kügelgen, A., Mellul, A., Schulze, U., Aarts, D. and Bharat, T.A.M (2020)
Phage liquid crystalline droplets form occlusive sheaths that encapsulate and protect infectious rod-shaped bacteria
Proc Natl Acad Sci U S A
Group Members
- Jan Böhning
- Ido Caspy
- Camila Clemente
- Nele Dierlamm
- Zephyr Ford
- Buse Isbilir
- Kenny Jungfer
- Suzanne Letham
- Hannah Ochner
- Olivia Smith
- Abul Tarafder
- Bogdan Toader
- Andriko von Kügelgen
- Zhexin (Eric) Wang
- Yuexuan Zhang