• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > Research Leaders > H to M > Michael Hastings
nb

Michael Hastings

Neurons and biological timing: molecular neurobiology of the circadian clock

mha@mrc-lmb.cam.ac.uk
Personal group site

Circadian rhythms are those daily cycles of physiology and behaviour that persist when organisms are isolated from the external world. They are expressed at all levels of life, from prokaryotic blue-green algae to higher plants and animals. Their biological role is to anticipate and thereby allow organisms to adapt to the solar day and night. In humans the cycle of sleep and wakefulness is the most obvious circadian rhythm, reflecting a profound alternation of brain states. Disruption of our circadian programme through shift work, old age and neurological disease is a significant and growing cause of chronic illness.

The principal circadian pacemaker is located in the suprachiasmatic nucleus  (SCN) of the hypothalamus, where individual neurons can operate as selfsustained circadian clocks. This same clock mechanism is also present in our major organ systems; heart, lungs, liver, kidney etc. The SCN maintains synchrony amongst these sub-ordinate clocks via its control over behaviour, neuroendocrine pathways and the autonomic nervous system. The genes responsible for encoding our circadian clockwork have recently been identified.

We are using real-time in vivo fluorescence and bioluminescence imaging, DNA microarrays, proteomic expression analyses and molecular genetic manipulations to understand how these “clock” genes and their protein products are able to assemble themselves into a 24h time-keeper, and how the central and peripheral timers together co-ordinate our metabolic and physiological rhythms. Through this approach we aim to provide a molecular genetic explanation for one of the most conserved and ancient forms of behaviour-circadian timing.



 

Selected Papers

  • Patton, A. P., Edwards, M. D., Smyllie, N. J., Hamnett, R., Chesham, J. E., Brancaccio, M., Maywood, E. S. and Hastings, M. H. (2020)
    The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit.
    Nat Commun 11: 3394.
  • Brancaccio, M., Edwards, M. D., Patton, A. P., Smyllie, N. J., Chesham, J. E., Maywood, E. S. and Hastings, M. H. (2019)
    Cell-autonomous clock of astrocytes drives circadian behavior in mammals.
    Science 363: 187-192.
  • Hastings, MH., Maywood, ES., Brancaccio, M. (2018)
    Generation of circadian rhythms in the suprachiasmatic nucleus.
    Nat. Rev. Neurosci., 19(8):453-469.
  • Brancaccio M., Patton AP., Chesham JE., Maywood ES., Hastings MH. (2017)
    Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling.
    Neuron 93(6): 1420-1435. PMID: 28285822.
  • Ernst RJ., Krogager TP., Maywood ES., Zanchi R., Beranek V., Elliott TS., Barry NP., Hastings MH. & Chin JW. (2016)
    Genetic code expansion in the mouse brain.
    Nature Chemical Biology 12: 776-778.
  • Smyllie NJ., Pilorz V., Boyd J., Meng QJ., Saer B., Chesham JE., Maywood ES., Krogager TP., Spiller DG., Boot-Handford R., White MR., Hastings MH., Loudon AS. (2016)
    Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2.
    Current Biology 26: 1880-1886.

Group Members

  • Aoife Campbell
  • Johanna (Jo) Chesham
  • Liz Maywood
  • David McManus
  • Emma Morris
  • Andrew Patton
  • Nicola Smyllie

Primary Sidebar

Research Leaders

  • A to G
    • Radu Aricescu
    • David Barford
    • Buzz Baum
    • Anne Bertolotti
    • Mariann Bienz
    • John Briggs
    • Simon Bullock
    • Albert Cardona
    • Andrew Carter
    • Jason Chin
    • Gerry Crossan
    • Emmanuel Derivery
    • Benjamin Falcon
    • Michel Goedert
    • Julian Gough
    • Ingo Greger
  • H to M
    • Michael Hastings
    • Ramanujan Hegde
    • Richard Henderson
    • Philipp Holliger
    • Leo James
    • Gregory Jefferis
    • Patrycja Kozik
    • Madeline Lancaster
    • Jan Löwe
    • Kate McDole
    • Andrew McKenzie
    • Harvey McMahon
    • Liz Miller
    • Sean Munro
    • Garib Murshudov
  • N to S
    • Kiyoshi Nagai (1949-2019)
    • David Neuhaus
    • Kelly Nguyen
    • John O’Neill
    • Lori Passmore
    • Venki Ramakrishnan
    • Felix Randow
    • Jing Ren
    • Katja Röper
    • Christopher Russo
    • Julian Sale
    • William Schafer
    • Sjors Scheres
    • Marta Shahbazi
    • John Sutherland
  • T to Z
    • Chris Tate
    • Rebecca Taylor
    • Marco Tripodi
    • Ana Tufegdžić Vidaković
    • Roger Williams
    • Joseph Yeeles
    • Marta Zlatic
  • Emeritus
    • Brad Amos
    • Tony Crowther
    • Phil Evans
    • Alan Fersht
    • Michael Gait
    • Rob Kay
    • John Kendrick-Jones
    • John Kilmartin
    • Peter Lawrence
    • Andrew Leslie
    • Hugh Pelham
    • Daniela Rhodes
    • Murray Stewart
    • Andrew Travers
    • Nigel Unwin
    • Greg Winter
  • LMB Fellows
  • Molecular Immunity Unit

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2021 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

[ Placeholder content for popup link ] WordPress Download Manager - Best Download Management Plugin