• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > Research Leaders > Emeritus > Brad Amos
ss

Brad Amos

Optical microscope development

Brad Amos is a biologist and a designer of optical instruments. A boyhood visit to the Plymouth Lab of the Marine Biological Association in the late ’50s led him to study Zoology at Oxford and then to do a PhD at Cambridge on the contraction of Vorticella, a microscopic pond organism. In this organism, he discovered and named an abundant calcium-binding protein which is now known as centrin and has been found in all cells. In 1981 he moved informally to the LMB , where he found that John White had set up a prototype confocal microscope. With John, Mick Fordham and Richard Durbin, he developed the confocal microscope which was taken up by Bio-Rad and was soon in use in labs throughout the world. Brad was seconded to Bio-Rad by the MRC for the next 17 years, and designed both the Radiance series of confocal microscopes and the production line jigs for manufacturing it. When the UK factory was acquired and closed by Zeiss he continued to design optical equipment for use in the LMB and to organise a course on advanced optical microscopy in Plymouth which is now in its eleventh year. Since retirement in 2010 he has been working part-time in the University of Strathclyde on new types of microscope, using his ‘Mesolens’ and collaborating in published work on nonlinear optics and novel lasers. He has retained his interest in marine and freshwater biology and has also written papers on gem faceting and invented a method for the measurement of refractive indices in gemstones (including diamond) where the index is too high for a conventional refractometer.


The Mesolens

The Mesolens is a giant microscope objective designed for computer data acquisition rather than the human eye. It arose from a realization in the early days of confocal microscopy that confocal images could not be obtained of large specimens, because the available low-magnification objectives had too poor a resolution in depth. With the help of a professional lens designer, a series of multi-immersion lens designs have been created with numerical apertures of nearly 0.5 at a magnification of 4x and field sizes of around 5mm diameter. This specification was chosen to facilitate the screening of human genes in transgenic mouse embryos but might also aid simultaneous observation of large numbers of neurones in the brain.

A recent form of Mesolens has been developed into a laser scanning microscope in a collaboration with Professor Gail McConnell , Dr John Dempster and others in the University of Strathclyde. With this team it has proved possible to record simultaneously cytology and whole-animal anatomy confocally in large specimens such as 10-day mouse embryos. A test centre for Mesoscopy was set up in Strathclyde during 2013 and is now producing spectacular results (see https://www.centreforbiophotonics.com/) . These results show that mesoscopy closes a gap in the repertoire of the optical microscope: provided the resolution (0.5um in length and 3um depth) is adequate the Mesolens is capable of gathering approximately a hundred times the amount of information in a focal series that can be gathered by a standard N.A. 1.4 60x microscope lens, with proportionally enlarged file sizes.

Single and double photon excitation of fluorescence (photographed by W.B. Amos and M.Cipollone in the LMB.
Testing glass for the macrolens, using a violet laser.

Primary Sidebar

Research Leaders

  • A to G
    • Matteo Allegretti
    • Radu Aricescu
    • Diana Arseni
    • David Barford
    • Buzz Baum
    • Anne Bertolotti
    • Tanmay Bharat
    • Simon Bullock
    • Albert Cardona
    • Andrew Carter
    • Jason Chin
    • Emmanuel Derivery
    • Juliette Fedry
    • Michel Goedert
    • Joe Greener
    • Ingo Greger
  • H to M
    • Michael Hastings
    • Ramanujan Hegde
    • Philipp Holliger
    • Leo James
    • Gregory Jefferis
    • Joergen Kornfeld
    • Patrycja Kozik
    • Madeline Lancaster
    • Roni Levin Konigsberg
    • Jan Löwe
    • Kate McDole
    • Andrew McKenzie
    • Harvey McMahon
    • Liz Miller
    • Sean Munro
    • Garib Murshudov
  • N to S
    • Kelly Nguyen
    • John O’Neill
    • Lori Passmore
    • Lalita Ramakrishnan
    • Venki Ramakrishnan
    • Felix Randow
    • Jing Ren
    • Wes Robertson
    • Noe Rodriguez
    • Christopher Russo
    • Benjamin Ryskeldi-Falcon
    • Julian Sale
    • William Schafer
    • Sjors Scheres
    • Marta Shahbazi
    • John Sutherland
  • T to Z
    • Chris Tate
    • Marco Tripodi
    • Ana Tufegdžić Vidaković
    • Roger Williams
    • Joseph Yeeles
    • Suyang Zhang
    • Marta Zlatic
    • Jerome Zürcher
  • Emeritus
    • Brad Amos
    • Mariann Bienz
    • Tony Crowther
    • Phil Evans
    • Alan Fersht
    • Michael Gait
    • Richard Henderson
    • Rob Kay
    • John Kendrick-Jones
    • John Kilmartin
    • Peter Lawrence
    • Andrew Leslie
    • David Neuhaus
    • Hugh Pelham
    • Daniela Rhodes
    • Murray Stewart
    • Andrew Travers
    • Nigel Unwin
    • Greg Winter
  • LMB Fellows
  • Molecular Immunity Unit

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok