• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > Research Leaders > Emeritus > John Kilmartin
cb

John Kilmartin

Conserved mechanisms of mitosis in yeast and mammals

jvk@mrc-lmb.cam.ac.uk

John Kilmartin started his career as a Ph.D. student with Max Perutz in 1965 working on CO2 transport by haemoglobin and the Bohr effect. He prepared specifically modified haemoglobins to test whether particular amino acids, some predicted from the X-ray crystallographic structure Perutz had just solved, were involved in these effects.

In 1976 he made a change in direction working on molecular aspects of yeast mitosis, using both genetic and biochemical methods. He purified tubulin from yeast, made monoclonal anti-tubulin antibodies, and developed immunofluorescence methods for yeast. Immunofluorescent screening of temperature-sensitive mutants identified a mutant in a kinetochore protein. The biochemical approach led to highly enriched spindle poles, containing the yeast equivalent of the centrosome, the spindle pole body (SPB).

This allowed the identification of numerous components of both the spindle and the SPB, first from monoclonal antibodies then later by mass spectrometry. More recently he has been working particularly on the molecular mechanism of the duplication of the SPB, and has proposed a model of how the duplication process occurs.


I am working on the duplication of the yeast spindle pole body (SPB), the functional equivalent of the centrosome in yeast. The SPB, like the centriole in the centrosome, duplicates itself at the start of the cell cycle to produce a single exact copy.

I am looking at the role of a conserved centrin-binding protein Sfi1p in this process. Sfi1p is connected to the mother SPB at its N terminus and, after a process of C-terminal dimerization, initiates the assembly of the daughter SPB.

Selected Papers

  • Li, S., Sandercock, A.M., Conduit, P., Robinson, C.V., Williams, R.L. and Kilmartin, J.V (2006)
    Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication.
    J Cell Biol 173: 867-877
  • Kilmartin, J. V. (2003)
    Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication.
    J Cell Biol 162: 1211-1221
  • Adams, I. R. and J. V. Kilmartin. (1999)
    Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae.
    J Cell Biol 145: 809-823

Primary Sidebar

Research Leaders

  • A to G
    • Matteo Allegretti
    • Radu Aricescu
    • Diana Arseni
    • David Barford
    • Buzz Baum
    • Anne Bertolotti
    • Tanmay Bharat
    • Simon Bullock
    • Albert Cardona
    • Andrew Carter
    • Jason Chin
    • Emmanuel Derivery
    • Juliette Fedry
    • Michel Goedert
    • Joe Greener
    • Ingo Greger
  • H to M
    • Michael Hastings
    • Ramanujan Hegde
    • Philipp Holliger
    • Leo James
    • Gregory Jefferis
    • Joergen Kornfeld
    • Patrycja Kozik
    • Madeline Lancaster
    • Roni Levin Konigsberg
    • Jan Löwe
    • Kate McDole
    • Andrew McKenzie
    • Harvey McMahon
    • Liz Miller
    • Sean Munro
    • Garib Murshudov
  • N to S
    • Kelly Nguyen
    • John O’Neill
    • Lori Passmore
    • Lalita Ramakrishnan
    • Venki Ramakrishnan
    • Felix Randow
    • Jing Ren
    • Wes Robertson
    • Noe Rodriguez
    • Christopher Russo
    • Benjamin Ryskeldi-Falcon
    • Julian Sale
    • William Schafer
    • Sjors Scheres
    • Marta Shahbazi
    • John Sutherland
  • T to Z
    • Chris Tate
    • Marco Tripodi
    • Ana Tufegdžić Vidaković
    • Roger Williams
    • Joseph Yeeles
    • Suyang Zhang
    • Marta Zlatic
    • Jerome Zürcher
  • Emeritus
    • Brad Amos
    • Mariann Bienz
    • Tony Crowther
    • Phil Evans
    • Alan Fersht
    • Michael Gait
    • Richard Henderson
    • Rob Kay
    • John Kendrick-Jones
    • John Kilmartin
    • Peter Lawrence
    • Andrew Leslie
    • David Neuhaus
    • Hugh Pelham
    • Daniela Rhodes
    • Murray Stewart
    • Andrew Travers
    • Nigel Unwin
    • Greg Winter
  • LMB Fellows
  • Molecular Immunity Unit

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok