• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > Research Leaders > Emeritus > Phil Evans
ss

Phil Evans

Structural studies of endocytosis components

pre@mrc-lmb.cam.ac.uk

Phil Evans began his research career as a student solving the crystal structure of phosphoglycerate kinase at Oxford University at a time when the X-ray crystallography of proteins was much slower than it is now. Following his Chemistry degree, D.Phil and a short post-doc in Oxford, he moved to the LMB in 1976 to work on a classic allosteric enzyme, phosphofructokinase, and with a series of crystal structures and biochemical studies over a period of 15 years defined the structural mechanism of its cooperativity and allosteric regulation. Following a collaboration with Kiyoshi Nagai in his early work on protein-RNA complexes, he worked on methylmalonyl-CoA mutase (with Peter Leadlay), solving the first structure of an enzyme that uses coenzyme B12, adenosylcobalamin. Since the late 1990s he has worked on the structure and function of proteins involved in vesicle trafficking and endocytosis, with Harvey McMahon and David Owen.

As a crystallographer, he has always found it valuable to collaborate with other groups with complementary expertise in biochemistry and cell biology, since the structure alone is not sufficient to understand function. He also continues his long-term interest in software developments in the techniques of X-ray crystallography, mainly in the initial processing of diffraction data, and has been involved in the UK-wide (and international) crystallographic software collaboration CCP4 since its inception in 1979.

He was elected a member of the European Molecular Biology Organisation in 2001 and a Fellow of the Royal Society in 2005.


Macromolecules are moved into cells and between cellular compartments by the movement of membrane vesicles containing protein and lipid cargo. The formation of these vesicles involves the assembly of complex protein machinery to invaginate the membrane, typically forming a polyhedral coat of clathrin around the vesicle.

We have been studying the structure and function of protein components of the clathrin-mediated endocytosis and other related systems, using X-ray crystallography, in collaboration with Harvey McMahon and with David Owen (Department of Clinical Biochemistry, Cambridge). This has led to a complete structure of one of the major players, the heterotetrameric AP2 adaptor complex, as well as parts of other components.

As well as protein-protein interactions, the endocytic system involves interactions between soluble proteins and the membrane. A number of endocytic proteins bend membranes into the tight curvature required for the formation of vesicles, and we have been investigating how this is done: for example, BAR domains have an intrinsic curved shape and also insert amphipathic helices into the membrane.

On the basis of the structures, mutants can be designed and used to probe function both in vitro and in vivo. The aim is to build up a complete structural and functional model of vesicle formation and its regulation, and to understand the difference in the trafficking pathways which run between different cell compartments.

Selected Papers

  • Kent, H.M., Evans, P.R., Schäfer, I.B., Gray, S.R., Sanderson, C.M., Luzio, J.P., Peden, A.A. and Owen, D.J. (2012)
    Structural basis of the intracellular sorting of the SNARE VAMP7 by the AP3 adaptor complex.
    Developmental Cell 22: 1-10.
  • Ingmar B Schäfer, Geoffrey G Hesketh, Nicholas A Bright, Sally R Gray, Paul R Pryor, Philip R Evans, J Paul Luzio, and David J Owen (2012)
    The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation.
    Nature Structural & Molecular Biology 19: 1300-1309.
  • Evans, P.R. and Murshudov, G.N. (2013)
    How good are my data and what is the resolution?
    Acta Cryst. D69: 1204–1214.

Primary Sidebar

Research Leaders

  • A to G
    • Matteo Allegretti
    • Radu Aricescu
    • Diana Arseni
    • David Barford
    • Buzz Baum
    • Anne Bertolotti
    • Tanmay Bharat
    • Simon Bullock
    • Albert Cardona
    • Andrew Carter
    • Jason Chin
    • Emmanuel Derivery
    • Juliette Fedry
    • Michel Goedert
    • Joe Greener
    • Ingo Greger
  • H to M
    • Michael Hastings
    • Ramanujan Hegde
    • Philipp Holliger
    • Leo James
    • Gregory Jefferis
    • Joergen Kornfeld
    • Patrycja Kozik
    • Madeline Lancaster
    • Roni Levin Konigsberg
    • Jan Löwe
    • Kate McDole
    • Andrew McKenzie
    • Harvey McMahon
    • Liz Miller
    • Sean Munro
    • Garib Murshudov
  • N to S
    • Kelly Nguyen
    • John O’Neill
    • Lori Passmore
    • Lalita Ramakrishnan
    • Venki Ramakrishnan
    • Felix Randow
    • Jing Ren
    • Wes Robertson
    • Noe Rodriguez
    • Christopher Russo
    • Benjamin Ryskeldi-Falcon
    • Julian Sale
    • William Schafer
    • Sjors Scheres
    • Marta Shahbazi
    • John Sutherland
  • T to Z
    • Chris Tate
    • Marco Tripodi
    • Ana Tufegdžić Vidaković
    • Roger Williams
    • Joseph Yeeles
    • Suyang Zhang
    • Marta Zlatic
    • Jerome Zürcher
  • Emeritus
    • Brad Amos
    • Mariann Bienz
    • Tony Crowther
    • Phil Evans
    • Alan Fersht
    • Michael Gait
    • Richard Henderson
    • Rob Kay
    • John Kendrick-Jones
    • John Kilmartin
    • Peter Lawrence
    • Andrew Leslie
    • David Neuhaus
    • Hugh Pelham
    • Daniela Rhodes
    • Murray Stewart
    • Andrew Travers
    • Nigel Unwin
    • Greg Winter
  • LMB Fellows
  • Molecular Immunity Unit

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok