• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > Research Leaders > A to G > Michel Goedert
nb

Michel Goedert

Molecular mechanisms of neurodegeneration

mg@mrc-lmb.cam.ac.uk
goedert fig1


Abnormal filamentous inclusions characterize many human neurodegenerative diseases, including Alzheimer’s and Parkinson’s. The formation of filaments or their mere presence is believed to result in the propagation of inclusions and neurodegeneration. Our work showed that the intracellular filaments of these diseases are made of either tau or alpha-synuclein. Others established that the extracellular deposits of Alzheimer’s disease are made of amyloid-beta.

We and others identified mutations in MAPT, the tau gene, that cause inherited forms of frontotemporal dementia with abundant tau inclusions, establishing a central role for tau assembly. SNCA, the alpha-synuclein gene, is mutated or multiplied in inherited cases of Parkinson’s disease and dementia with Lewy bodies, and we showed that alpha-synuclein is the major component of the filamentous inclusions of Parkinson’s disease, other Lewy body disorders and multiple system atrophy.

In collaboration with Sjors Scheres, we are using electron cryo-microscopy (cryo-EM) to determine the structures of pathological amyloid filaments made of assembled tau, alpha-synuclein and amyloid-beta 42. We have also shown that cryo-EM can be used to identify previously unknown amyloid filaments and new disease entities. Each tauopathy is characterized by its own filament conformation, but some tauopathies share the same conformation, for example Alzheimer’s disease and primary age-related tauopathy. For synucleinopathies, we have established that disorders with Lewy bodies, such as Parkinson’s disease and dementia with Lewy bodies, share the same fold, which is different from the folds of multiple system atrophy. For tauopathies and synucleinopathies, differences in conformation are between some diseases, not between individuals with a given disease.

To better understand mechanisms of disease, it is important to develop methods for forming amyloid filaments like those from human brains. As a first step, we have shown that recombinant tau (297-391) assembles in vitro into filaments that are identical to the paired helical filaments of Alzheimer’s disease.

goedert fig2

Selected Papers

  • Yang, Y., Shi, Y., Schweighauser, M., Zhang, X., Kotecha, A., Murzin, A.G., Garringer, H.J., Cullinane, P.W., Saito, Y., Foroud, T., Warner, T.T., Hasegawa, K., Vidal, R., Murayama, S., Revesz, T., Ghetti, B., Hasegawa, M., Lashley, T., Scheres, S.H.W. and Goedert, M. (2022)
    Structures of α-synuclein filaments from human brains with Lewy pathology.
    Nature 610: 791-795.
  • Lövestam, S., Koh, F.A., van Knippenberg, B., Kotecha, A., Murzin, A.G., Goedert, M. and Scheres, S.H.W. (2022)
    Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy.
    eLife 11: e76494.
  • Schweighauser, M., Arseni, D., Bacioglu, M., Huang, M., Lövestam, S., Shi, Y., Yang, Y., Zhang, W., Kotecha, A., Garringer, H.J., Vidal, R., Hallinan, G.I., Newell, K.L., Tarutani, A., Murayama, S., Miyazaki, M., Saito, Y., Yoshida, M., Hasegawa, K., Lashley, T., Revesz, T., Kovacs, G.G., van Swieten, J., Takao, M., Hasegawa, M., Ghetti, B., Spillantini, M.G., Ryskeldi-Falcon, B., Murzin, A.G., Goedert, M. and Scheres, S.H.W. (2022)
    Age-dependent formation of TMEM106B amyloid filaments in human brains.
    Nature 605: 310-314.
  • Yang, Y., Arseni, D., Zhang, W., Huang, M., Lövestam, S., Schweighauser, M., Kotecha, A., Murzin, A.G., Peak-Chew, S.Y., Macdonald, J., Lavenir, I., Garringer, H.J., Gelpi, E., Newell, K.L., Kovacs, G.G., Vidal, R., Ghetti, B., Ryskeldi-Falcon, B., Scheres, S.H.W. and Goedert, M. (2022)
    Cryo-EM structures of amyloid-β 42 filaments from human brains.
    Science 357: 167-172.
  • Macdonald J.A., Chen, J.L., Masuda-Suzukake, M., Schweighauser, M., Jaunmuktane, Z., Warner, T., Holton, J.L., Grossman, A., Berks, R., Lavenir, I. and Goedert, M. (2021)
    Assembly of α-synuclein and neurodegeneration in the central nervous system of heterozygous M83 mice following the peripheral administration of α-synuclein seeds.
    Acta Neuropathologica Communications 9: 189.
  • Shi, Y., Zhang, W., Yang, Y., Murzin, A.G., Falcon, B., Kotecha A, van Beers, M., Tarutani, A., Kametani, F., Garringer, H.J., Vidal, R., Hallinan, G.I., Lashley, T., Saito, Y., Murayama, S., Yoshida, M., Tanaka, H., Kakita, A., Ikeuchi, T., Robinson, A.C., Mann, D.M.A., Kovacs, G.G., Revesz, T., Ghetti, B., Hasegawa, M., Goedert, M. and Scheres, S.H.W. (2021)
    Structure-based classification of tauopathies.
    Nature 598: 395-363.
  • Shi, Y., Murzin, A.G., Falcon, B., Epstein, A., Machin, J., Tempest, P., Newell, K.L., Vidal, R., Garringer, H.J., Sahara, N., Higuchi, M., Ghetti, B., Jang, M.-K., Scheres, S.H.W. and Goedert, M. (2021)
    Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607.
    Acta Neuropathologica 141: 697-709.
  • Lövestam, S., Schweighauser, M., Matsubara, T., Murayama, S., Tomita, T., Ando, T., Hasegawa, K., Yoshida, M., Tarutani, A., Hasegawa, M., Goedert, M. and Scheres, S.H.W. (2021)
    Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy.
    FEBS Open Bio 11: 999-1013.

Group Members

  • Yeongjin Baek
  • Melissa Huang
  • Taxiarchis Katsinelos
  • Sofia Lovestam
  • Jennifer Macdonald
  • John Walker

Primary Sidebar

Research Leaders

  • A to G
    • Matteo Allegretti
    • Radu Aricescu
    • Diana Arseni
    • David Barford
    • Buzz Baum
    • Anne Bertolotti
    • Tanmay Bharat
    • Simon Bullock
    • Albert Cardona
    • Andrew Carter
    • Jason Chin
    • Emmanuel Derivery
    • Juliette Fedry
    • Michel Goedert
    • Joe Greener
    • Ingo Greger
  • H to M
    • Michael Hastings
    • Ramanujan Hegde
    • Philipp Holliger
    • Leo James
    • Gregory Jefferis
    • Joergen Kornfeld
    • Patrycja Kozik
    • Madeline Lancaster
    • Roni Levin Konigsberg
    • Jan Löwe
    • Kate McDole
    • Andrew McKenzie
    • Harvey McMahon
    • Liz Miller
    • Sean Munro
    • Garib Murshudov
  • N to S
    • Kelly Nguyen
    • John O’Neill
    • Lori Passmore
    • Lalita Ramakrishnan
    • Venki Ramakrishnan
    • Felix Randow
    • Jing Ren
    • Wes Robertson
    • Noe Rodriguez
    • Christopher Russo
    • Benjamin Ryskeldi-Falcon
    • Julian Sale
    • William Schafer
    • Sjors Scheres
    • Marta Shahbazi
    • John Sutherland
  • T to Z
    • Chris Tate
    • Marco Tripodi
    • Ana Tufegdžić Vidaković
    • Roger Williams
    • Joseph Yeeles
    • Suyang Zhang
    • Marta Zlatic
    • Jerome Zürcher
  • Emeritus
    • Brad Amos
    • Mariann Bienz
    • Tony Crowther
    • Phil Evans
    • Alan Fersht
    • Michael Gait
    • Richard Henderson
    • Rob Kay
    • John Kendrick-Jones
    • John Kilmartin
    • Peter Lawrence
    • Andrew Leslie
    • David Neuhaus
    • Hugh Pelham
    • Daniela Rhodes
    • Murray Stewart
    • Andrew Travers
    • Nigel Unwin
    • Greg Winter
  • LMB Fellows
  • Molecular Immunity Unit

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok