• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > Research Leaders > H to M > Michael Hastings
nb

Michael Hastings

Neurons and biological timing: molecular neurobiology of the circadian clock

mha@mrc-lmb.cam.ac.uk
Personal group site

Circadian rhythms are those daily cycles of physiology and behaviour that persist when organisms are isolated from the external world. They are expressed at all levels of life, from prokaryotic blue-green algae to higher plants and animals. Their biological role is to anticipate and thereby allow organisms to adapt to the solar day and night. In humans the cycle of sleep and wakefulness is the most obvious circadian rhythm, reflecting a profound alternation of brain states. Disruption of our circadian programme through shift work, old age and neurological disease is a significant and growing cause of chronic illness.

The principal circadian pacemaker is located in the suprachiasmatic nucleus  (SCN) of the hypothalamus, where individual neurons can operate as selfsustained circadian clocks. This same clock mechanism is also present in our major organ systems; heart, lungs, liver, kidney etc. The SCN maintains synchrony amongst these sub-ordinate clocks via its control over behaviour, neuroendocrine pathways and the autonomic nervous system. The genes responsible for encoding our circadian clockwork have recently been identified.

We are using real-time in vivo fluorescence and bioluminescence imaging, DNA microarrays, proteomic expression analyses and molecular genetic manipulations to understand how these “clock” genes and their protein products are able to assemble themselves into a 24h time-keeper, and how the central and peripheral timers together co-ordinate our metabolic and physiological rhythms. Through this approach we aim to provide a molecular genetic explanation for one of the most conserved and ancient forms of behaviour-circadian timing.



 

Selected Papers

  • McManus, D., Polidarova, L., Smyllie, NJ., Patton, AP., Chesham, JE., Maywood, ES., Chin, JW., Hastings, MH. (2022)
    Cryptochrome 1 as a state variable of the circadian clockwork of the suprachiasmatic nucleus: Evidence from translational switching.
    PNAS 119: No. 34.
  • Smyllie, NJ., Bagnall, J., Koch, AA., Niranjan, D., Polidarova, L., Chesham, JE., Chin, JW., Partch, CL., Loudon, ASI., Hastings, MH. (2022)
    Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons.
    PNAS 119: No. 4
  • Patton, A. P., Edwards, M. D., Smyllie, N. J., Hamnett, R., Chesham, J. E., Brancaccio, M., Maywood, E. S. and Hastings, M. H. (2020)
    The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit.
    Nat Commun 11: 3394.
  • Brancaccio, M., Edwards, M. D., Patton, A. P., Smyllie, N. J., Chesham, J. E., Maywood, E. S. and Hastings, M. H. (2019)
    Cell-autonomous clock of astrocytes drives circadian behavior in mammals.
    Science 363: 187-192.
  • Hastings, MH., Maywood, ES., Brancaccio, M. (2018)
    Generation of circadian rhythms in the suprachiasmatic nucleus.
    Nat. Rev. Neurosci.19(8):453-469.
  • Brancaccio M., Patton AP., Chesham JE., Maywood ES., Hastings MH. (2017)
    Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling.
    Neuron 93(6): 1420-1435. PMID: 28285822.

Group Members

  • Ernesto Ciabatti
  • Elena del Carmen Gómez García
  • Olivia Johnson
  • Andrew Oliphant
  • Andrew Patton
  • Chee Sia
  • Nicola Smyllie

Primary Sidebar

Research Leaders

  • A to G
    • Matteo Allegretti
    • Radu Aricescu
    • Diana Arseni
    • David Barford
    • Buzz Baum
    • Anne Bertolotti
    • Tanmay Bharat
    • Simon Bullock
    • Albert Cardona
    • Andrew Carter
    • Jason Chin
    • Emmanuel Derivery
    • Juliette Fedry
    • Michel Goedert
    • Joe Greener
    • Ingo Greger
  • H to M
    • Michael Hastings
    • Ramanujan Hegde
    • Philipp Holliger
    • Leo James
    • Gregory Jefferis
    • Joergen Kornfeld
    • Patrycja Kozik
    • Madeline Lancaster
    • Roni Levin Konigsberg
    • Jan Löwe
    • Kate McDole
    • Andrew McKenzie
    • Harvey McMahon
    • Liz Miller
    • Sean Munro
    • Garib Murshudov
  • N to S
    • Kelly Nguyen
    • John O’Neill
    • Lori Passmore
    • Lalita Ramakrishnan
    • Venki Ramakrishnan
    • Felix Randow
    • Jing Ren
    • Wes Robertson
    • Noe Rodriguez
    • Christopher Russo
    • Benjamin Ryskeldi-Falcon
    • Julian Sale
    • William Schafer
    • Sjors Scheres
    • Marta Shahbazi
    • John Sutherland
  • T to Z
    • Chris Tate
    • Marco Tripodi
    • Ana Tufegdžić Vidaković
    • Roger Williams
    • Joseph Yeeles
    • Suyang Zhang
    • Marta Zlatic
    • Jerome Zürcher
  • Emeritus
    • Brad Amos
    • Mariann Bienz
    • Tony Crowther
    • Phil Evans
    • Alan Fersht
    • Michael Gait
    • Richard Henderson
    • Rob Kay
    • John Kendrick-Jones
    • John Kilmartin
    • Peter Lawrence
    • Andrew Leslie
    • David Neuhaus
    • Hugh Pelham
    • Daniela Rhodes
    • Murray Stewart
    • Andrew Travers
    • Nigel Unwin
    • Greg Winter
  • LMB Fellows
  • Molecular Immunity Unit

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok