• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > The molecular origins of Parkinson’s Disease
nb

Harvey McMahon

The molecular origins of Parkinson’s Disease

Group Leader Page

Parkinson’s disease (PD) is second commonest neurodegenerative disease affecting 1% of the population, with age being the biggest risk factor. While the aetiology remains unknown, several genes have been discovered causing familial forms of PD. These genes implicate diverse cellular and neuronal processes with an emphasis on mitochondrial and/or lysosomal trafficking, resulting in the abnormal build up of protein aggregates and neuronal loss in the substantia nigra. Although familial forms account for less than 4% of PD, these phenomena are also found in sporadic cases of PD, providing a potent rationale to understand a molecular biology approach.

We have found that synuclein, a protein mutated in Parkinson’s maps to a pathway for mitochondrial quality control

Aims

Our research over the past number of years has followed Parkinson’s in post-mortem brain through animal models to in vitro cell based assays. We now have a cell-based model where we can monitor the normal function of synuclein and the effects of disease mutations. We would like to:

  1. study the role of environmental factors in the disease progression.
  2. study how disruption of membrane trafficking leads to aggregation of synuclein protein or potentially the reverse.
  3. study how our newly identified pathway for synuclein activity relates to the activity of other mutated proteins in the disease.

Our hope is that this study will allow us to understand the mechanisms of PD from a cell biology perspective, but will also enable us to delve deeper into functional aspects of the disease. Our lab has acquired unique insights from our understanding of the biophysical mechanisms of alpha-synuclein/membrane interaction. This project will expand these finding and  develop a cell based assay aimed at screening for useful future therapeutics.

References:

Boucrot, E., et. al. (2015).
Endophilin marks and controls a clathrin-independent endocytic pathway.
Nature, 517(7535), 460–465.

Boucrot, E., et. al. (2012).
Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains.
Cell, 149(1), 124–136.

Llobet, A., Gallop, J. L., Burden, J. J. E., Camdere, G., Chandra, P., Vallis, Y., et al. (2011).
Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse.
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 31(23), 8512–8519.

Gunawardana, N., Almeida-Souza, L., Howard, G., Colussi, A., Barker, R.A. and McMahon, H.T.
An alpha-synuclein-dependent pathway for mitochondrial quality control.
Manuscript in preparation.

Primary Sidebar

  • Home
  • About LMB
    • Useful Contacts
    • Building and Facilities
    • LMBees Blog
    • Fast Facts
    • History of the LMB
    • LMB Archive
      • Books
      • Manuscripts & Correspondence
      • Photographs
        • Browse the photo archive
      • Recordings
      • Newspaper Articles Archive
      • Scientific Models
      • Published Research
    • LMB Alumni
      • LMB Alumni List
      • LMB Alumni News
      • Newsletters
      • Share Your Memories
        • Gerry Rubin: Looking Back
        • Behind the Scenes with… Steve Scotcher
      • Photographs from the Archive
      • Keeping in touch
    • Max Perutz Fund
    • How to Find Us
    • Contact Directory
  • Research
    • Goals and Research Focus
    • Cell Biology
    • Neurobiology
      • Initiative with the Department of Clinical Neurosciences
    • Protein and Nucleic Acid Chemistry
      • Centre for Chemical and Synthetic Biology
    • Structural Studies
    • Technology Transfer
      • History Of Technology Transfer
      • Examples of Recent Technology Transfer Initiatives
    • Scientific Facilities & Support Services
    • Locally Developed Software
    • Scientific Training
      • Electron Microscopy
      • Biophysics Lectures
      • Macromolecular Crystallisation
      • Crystallography Course 2013
      • Statistics Course 2014
      • RNA-seq course 2020
    • Published Research
    • Molecular Immunity Unit
    • Animal Research
      • Why is animal research needed?
      • Alternatives to using Animals in Research
      • Welfare and ethics
      • LMB Research Involving Animals
      • Biological Services Group
      • Concordat on Openness in Animal Research
      • Useful Links
  • Research Groups
    • A to G
    • H to M
    • N to S
    • T to Z
    • Emeritus
    • LMB Fellows
    • Molecular Immunity Unit
  • Students
    • International PhD Programme
      • Programme Overview
      • Projects
      • Student Testimonials
      • Entrance Requirements
      • Overview of admissions
      • Funding
      • How To Apply
      • Key Dates for Applicants
      • FAQs
      • Useful Links
      • How did you hear about us?
      • Contact Us
    • Graduate Student Association
    • Student Placement Scheme
    • Work Experience
  • Recruitment
    • Current Vacancies
    • Postdoctoral Opportunities
    • Students
  • Life at the LMB
    • Working Here
    • LMBees Blog
    • Living Socially
    • Equality, Diversity and Inclusion (EDI)
    • Group Leader Profiles
  • Achievements
    • LMB Nobel Prizes
    • Royal Society Awards
    • EMBO Awards
    • Academy of Medical Sciences
    • Perutz Student Prize
    • Joan A. Steitz Postdoc Prize
    • Technology Transfer
  • News & Events
    • Insight on Research
    • LMB News
    • LMB In The News
    • LMB Alumni News
    • LMB 365
    • Newspaper Archive
    • Scientific Glossary
    • Scientific Seminars
    • Scientific Training
    • Public Engagement
      • Supporting Education
      • LMB on the Road
      • Events at the LMB
      • Resources
      • LMB Science Stories
      • Contact Us
    • Information for Journalists
    • Photographs

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok