• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
MRC Laboratory of Molecular Biology

MRC Laboratory of Molecular Biology

One of the world's leading research institutes, our scientists are working to advance understanding of biological processes at the molecular level - providing the knowledge needed to solve key problems in human health.

  • Home
  • About LMB
  • Research
  • Research Groups
  • Students
  • Recruitment
  • Life at the LMB
  • Achievements
  • News & Events
Home > Replicating RNA with RNA
pnac

Philipp Holliger

Replicating RNA with RNA

Group Leader Page

A critical event in the origin of life is thought to have been the emergence of an RNA molecule capable of self-replication as well as mutation, and hence evolution towards ever more efficient replication.

The Holliger lab uses synthetic biology approaches to reconstruct modern day equivalents of the ancestral replicase and study life’s first genetic system “by proxy” with the use of modern-day RNA enzymes (ribozymes) generated by in vitro evolution. Progress in this area has fundamental implications for a better understanding of both the origin of life and the engineering of simple chemical systems with life-like properties.

Previously we have discovered RNA polymerase ribozymes that are capable of the templated synthesis of another simple ribozyme (Wochner et al, 2011) or long (> 200 nt) RNA oligomers and this activity is potentiated by structured media such as the eutectic phase of water ice (Attwater et al, 2013) and by simple peptides derived from the cores of both ribosomal subunits (Tagami et al, 2017).

More recently, we have discovered polymerase ribozymes that utilize trinucleotides (triplets) as substrates (Attwater et al, 2018). Such triplet polymerase ribozymes (TPR) show a remarkable ability to replicate highly structured RNAs as well as circular RNAs using rolling circle synthesis (Kristoffersen et al, 2022) as well as non-canonical primer-free and reverse direction (3’-5’) modes of RNA replication not seen in nature. Using coupled pH and freeze-thaw cycles, we show that the TPR can replicate and exponentially amplify double-stranded RNAs including parts of itself using triplet substrates (Attwater et al, 2023). Recently we have also solved the structure of a TPR apoenzyme by cryo-electron microscopy (CryoEM)  (McRae et al, 2024) providing the foundation for a better understanding of the potential of RNA for self-replication.

Potential projects will focus on advancing RNA-catalyzed RNA synthesis using in vitro evolution, machine learning and structural analysis (CryoEM) towards the engineering of an RNA system capable of self-replication and evolution.


References

Wochner A, Attwater J, Coulson A, Holliger P (2011)
Ribozyme-catalyzed transcription of an active ribozyme.
Science. 332:209-211.

Attwater J, Wochner A, Holliger P (2013)
In-ice evolution of RNA polymerase ribozyme activity.
Nature Chemistry 5:1011-1018.

Tagami S, Attwater J, Holliger P. (2017)
Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function.
Nature Chemistry 9:325-332

Attwater J, Raguram A, Morgunov AS, Gianni E, Holliger P. (2018)
Ribozyme-catalysed RNA synthesis using triplet building blocks.
eLife, 7: e35255

Kristoffersen EL, Burman M, Noy A, Holliger P (2022)
Rolling circle synthesis catalyzed by RNA
eLife, 11: e7518

Attwater J, Augustin T, Curran JF, Kwok S, Gianni E, Holliger P (2023)
Trinucleotide building blocks enable exponential ribozyme-catalysed RNA replication and open-ended growth of diverse RNA sequence pools
bioRXiv

McRae EKS, Wan CJK, Kristoffersen EL, Hansen K, Gianni E, Gallego I, Curran JF, Attwater J, Holliger P, Andersen ES (2024)
Cryo-EM structure and functional landscape of an RNA polymerase ribozyme.
Proc. Natl. Acad. Sci. USA, 121:  e2313332121

Primary Sidebar

  • Home
  • About LMB
    • Useful Contacts
    • Building and Facilities
    • LMBees Blog
    • Fast Facts
    • History of the LMB
    • LMB Archive
      • Books
      • Manuscripts & Correspondence
      • Photographs
        • Browse the photo archive
      • Recordings
      • Newspaper Articles Archive
      • Scientific Models
      • Published Research
    • LMB Alumni
      • LMB Alumni List
      • LMB Alumni News
      • Newsletters
      • Share Your Memories
        • Gerry Rubin: Looking Back
        • Behind the Scenes with… Steve Scotcher
      • Photographs from the Archive
      • Keeping in touch
    • Max Perutz Fund
    • How to Find Us
    • Contact Directory
  • Research
    • Goals and Research Focus
    • Cell Biology
    • Neurobiology
      • Initiative with the Department of Clinical Neurosciences
    • Protein and Nucleic Acid Chemistry
      • Centre for Chemical and Synthetic Biology
    • Structural Studies
    • Technology Transfer
      • History Of Technology Transfer
      • Examples of Recent Technology Transfer Initiatives
    • Scientific Facilities & Support Services
    • Locally Developed Software
    • Scientific Training
      • Electron Microscopy
      • Biophysics Lectures
      • Macromolecular Crystallisation
      • Crystallography Course 2013
      • Statistics Course 2014
      • RNA-seq course 2020
    • Published Research
    • Molecular Immunity Unit
    • Animal Research
      • Why is animal research needed?
      • Alternatives to using Animals in Research
      • Welfare and ethics
      • LMB Research Involving Animals
      • Biological Services Group
      • Concordat on Openness in Animal Research
      • Useful Links
  • Research Groups
    • A to G
    • H to M
    • N to S
    • T to Z
    • Emeritus
    • LMB Fellows
    • Molecular Immunity Unit
  • Students
    • International PhD Programme
      • Programme Overview
      • Projects
      • Student Testimonials
      • Entrance Requirements
      • Overview of admissions
      • Funding
      • How To Apply
      • Key Dates for Applicants
      • FAQs
      • Useful Links
      • How did you hear about us?
      • Contact Us
    • Graduate Student Association
    • Student Placement Scheme
    • Work Experience
  • Recruitment
    • Current Vacancies
    • Postdoctoral Opportunities
    • Students
  • Life at the LMB
    • Working Here
    • LMBees Blog
    • Living Socially
    • Equality, Diversity and Inclusion (EDI)
    • Group Leader Profiles
  • Achievements
    • LMB Nobel Prizes
    • Royal Society Awards
    • EMBO Awards
    • Academy of Medical Sciences
    • Perutz Student Prize
    • Joan A. Steitz Postdoc Prize
    • Technology Transfer
  • News & Events
    • Insight on Research
    • LMB News
    • LMB In The News
    • LMB Alumni News
    • LMB 365
    • Newspaper Archive
    • Scientific Glossary
    • Scientific Seminars
    • Scientific Training
    • Public Engagement
      • Supporting Education
      • LMB on the Road
      • Events at the LMB
      • Resources
      • LMB Science Stories
      • Contact Us
    • Information for Journalists
    • Photographs

Search

  • Privacy & Cookies
  • Contact Directory
  • Freedom of Information
  • Site Map
Find Us
©2025 MRC Laboratory of Molecular Biology,
Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 01223 267000

The MRC is part of UK Research and Innovation

Contact Us

This site uses cookies. The LMB may use cookies to analyse how you use our website. We use external analysis systems which may set additional cookies to perform their analysis. These cookies (and any others in use) are detailed in our Privacy and Cookies Policy and are integral to our website. You can delete or disable these cookies in your web browser if you wish, but then our site may not work as it is designed. Ok